
 

 
 

 

 

POLITECHNIKA POZNAŃSKA 

WYDZIAŁ INŻYNIERII MECHANICZNEJ 

 

 

 

 

 

Inteligentny system nadzorowania 

zautomatyzowanego procesu technologicznego 

konfekcjonowania wyrobów 

 

 

mgr inż. Hubert Kędziora 

 

 

ROZPRAWA DOKTORSKA 
 

 

Promotor: dr hab. inż. Małgorzata Jasiulewicz-Kaczmarek 

Promotor pomocniczy: dr inż. Justyna Trojanowska   

 

 

 

 

 

 

POZNAŃ 2025 

 

 

 

 



  

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pani Promotor, dr hab. inż. Małgorzacie Jasiulewicz-Kaczmarek, prof. PP, składam serdeczne 

podziękowania za nieocenione wsparcie, cenne wskazówki merytoryczne oraz okazywaną życzliwość 

w trakcie realizacji niniejszej rozprawy doktorskiej. 

Profesjonalizm i zaangażowanie Pani Profesor były dla mnie źródłem inspiracji i motywacji, a 

możliwość pracy pod Jej kierunkiem stanowiła dla mnie prawdziwy zaszczyt. 

 

 

 

 

Mojej Żonie, Alicji, pragnę podziękować za cierpliwość, wyrozumiałość i wsparcie, które 

towarzyszyły mi podczas całego okresu przygotowywania niniejszej rozprawy. 

Pracę tę dedykuję Żonie, Synowi Stanisławowi, Córce Małgorzacie oraz Kolejnej Pociesze, która 

wkrótce przyjdzie na świat – jako wyraz wdzięczności i miłości dla Najbliższych, będących dla mnie 

największą motywacją i siłą w tej drodze. 

 



  

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rozprawa doktorska została zrealizowana w ramach programu "Doktorat wdrożeniowy", 

finansowanego z budżetu Państwa i realizowanego przy współpracy Politechniki 

Poznańskiej oraz Mróz S.A., Umowa nr DWD/4/22/2020 

Opiekun pomocniczy: mgr inż. Szymon Dobrychłop 



  

4 

 

Spis treści 

Wykaz skrótów i oznaczeń ...................................................................................................................... 6 

STRESZCZENIE .................................................................................................................................... 9 

ABSTRACT .......................................................................................................................................... 10 

1. Wprowadzenie ....................................................................................................................................11 

1.1. Geneza tematu pracy ...................................................................................................................11 

1.2. Problem badawczy ..................................................................................................................... 12 

1.3. Cel pracy..................................................................................................................................... 13 

1.4. Struktura pracy ........................................................................................................................... 14 

2. Przegląd stanu wiedzy – badania literaturowe .................................................................................. 16 

2.1. Nadzorowanie procesów produkcyjnych ................................................................................... 16 

2.1.1. Od manualnego nadzoru do Przemysłu 5.0 ......................................................................... 16 

2.1.2. Funkcje inteligentnego nadzorowania procesów ................................................................. 17 

2.1.3. Systemy i technologie wspomagające nadzorowanie procesów produkcyjnych................. 19 

2.1.4. Architektura inteligentnego systemu nadzorowania ............................................................ 25 

2.1.5. Metody oceny i wskaźniki efektywności inteligentnego nadzorowania procesów ............. 27 

2.2. Konfekcjonowanie ...................................................................................................................... 32 

2.2.1. Znaczenie i charakterystyka procesu konfekcjonowania .................................................... 32 

2.2.2. Wyzwania operacyjne i jakościowe w procesie konfekcjonowania .................................... 36 

2.2.3. Metody oraz narzędzia nadzorowania w procesach konfekcjonowania .............................. 38 

2.2.4. Integracja i perspektywy rozwoju systemów nadzorowania procesu konfekcjonowania ... 43 

2.3. Podsumowanie stanu wiedzy ...................................................................................................... 45 

3. Koncepcja i projekt systemu ............................................................................................................. 48 

3.1. Środowisko wdrożeniowe .......................................................................................................... 48 

3.2. Identyfikacja problemów występujących w analizowanym procesie ......................................... 55 

3.3. Koncepcja systemu ..................................................................................................................... 58 

4. Budowa inteligentnego systemu nadzorowania procesu konfekcjonowania wyrobów .................... 66 

4.1. Moduł nadzorowania masy porcji .............................................................................................. 66 

4.2. Moduł nadzorowania „nieszczelności I” .................................................................................... 69 

4.3. Moduł nadzorowania „nieszczelności II” ................................................................................... 85 

4.4. Moduł nadzorowania etykiet i ich treści .................................................................................. 103 

4.5. Moduł nadzorowania odrzutu wyrobów niezgodnych ............................................................. 107 

4.6. Cyberbezpieczeństwo systemu .................................................................................................. 111 

5. Walidacja i ocena działania systemu ................................................................................................112 

5.1. Weryfikacja modułów i modeli .................................................................................................112 

5.2. Walidacja całościowa na danych operacyjnych .........................................................................116 



  

5 

 

5.3. Analiza SWOT implementacji .................................................................................................. 128 

6. Podsumowanie i wnioski ................................................................................................................. 130 

6.1. Najważniejsze rezultaty badań i efektów wdrożenia ................................................................ 130 

6.2. Wnioski poznawcze .................................................................................................................. 131 

6.3. Wnioski utylitarne .................................................................................................................... 133 

6.4. Ograniczenia badań i napotkane problemy .............................................................................. 133 

6.5. Rekomendacje i kierunki dalszych badań ................................................................................ 134 

ZAŁĄCZNIKI ..................................................................................................................................... 137 

SPIS RYSUNKÓW ............................................................................................................................. 147 

SPIS TABEL ....................................................................................................................................... 150 

SPIS ZAŁĄCZNIKÓW ...................................................................................................................... 151 

BIBLIOGRAFIA ................................................................................................................................. 152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

6 

 

Wykaz skrótów i oznaczeń 

• 5G – piąta generacja technologii sieci komórkowych, zapewniająca wyższą przepływność i niższe 

opóźnienia. 

• ADR – międzynarodowa konwencja dotycząca przewozu drogowego towarów niebezpiecznych (ang. 

European Agreement concerning the International Carriage of Dangerous Goods by Road). 

• AGV – autonomiczny pojazd transportowy (ang. Automated Guided Vehicle). 

• AHP – metoda hierarchicznej analizy problemów decyzyjnych (ang. Analytic Hierarchy Process). 

• AI – sztuczna inteligencja (ang. Artificial Intelligence). 

• API – interfejs programistyczny do komunikacji między programami (ang. Application Programming 

Interface). 

• AR – rozszerzona rzeczywistość (ang. Augmented Reality). 

• ARIMA – model statystyczny do analizy i prognozowania szeregów czasowych (ang. Autoregressive 

Integrated Moving Average). 

• AUC – pole pod krzywą ROC; miara skuteczności klasyfikatora (ang. Area Under the Curve). 

• AVEVA – globalny dostawca oprogramowania inżynieryjnego i przemysłowego. 

• BERT – dwukierunkowe reprezentacje z transformera (ang. Bidirectional Encoder Representations from 

Transformers). 

• BI – analityka biznesowa; procesy i narzędzia przekształcające dane w informacje wspierające decyzje (ang. 

Business Intelligence). 

• Big Data – duże, zmienne i różnorodne zbiory danych oraz techniki ich przetwarzania. 

• Blockchain – rozproszony, niezmienny rejestr danych przechowywanych w kryptograficznie powiązanych 

blokach. 

• BP – wsteczna propagacja błędu w sieciach neuronowych (ang. Backpropagation). 

• CCP – krytyczny punkt kontroli w systemie HACCP (ang. Critical Control Point). 

• CCR – wskaźnik reklamacji klientów (ang. Customer Complaint Rate). 

• Cloud computing – usługi chmurowe zapewniające dostęp do zasobów obliczeniowych przez Internet. 

• CMMS – zintegrowane oprogramowanie do zarządzania utrzymaniem ruchu (ang. Computerized 

Maintenance Management System). 

• CNC – komputerowe sterowanie numeryczne obrabiarek (ang. Computer Numerical Control). 

• CNN – konwolucyjna sieć neuronowa (ang. Convolutional Neural Network). 

• COPQ – koszty złej jakości (ang. Costs of Poor Quality). 

• CRM – zarządzanie relacjami z klientami (ang. Customer Relationship Management). 

• CSF – kluczowe czynniki sukcesu (ang. Critical Success Factors). 

• Data Matrix – dwuwymiarowy matrycowy kod kreskowy (ang. Data Matrix Code). 

• DBSCAN – algorytm klasteryzacji oparty na gęstości (ang. Density-Based Spatial Clustering of 

Applications with Noise). 

• DCS – rozproszony system sterowania (ang. Distributed Control System). 

• Digital Twin – cyfrowy bliźniak; wirtualna reprezentacja obiektu lub systemu zsynchronizowana z 

jednostką fizyczną. 

• DL – uczenie głębokie (ang. Deep Learning). 

• DPMO – liczba defektów na milion szans (ang. Defects Per Million Opportunities). 

• DQN – głęboka sieć Q ucząca się ze wzmocnieniem (ang. Deep Q-Network). 

• Edge computing – model obliczeniowy polegający na przetwarzaniu danych blisko ich źródła (na krawędzi 

sieci). 

• ERP – system zarządzania zasobami przedsiębiorstwa (ang. Enterprise Resource Planning). 

• FFS – formowanie, napełnianie i zgrzewanie opakowań (ang. Form–Fill–Seal). 

• FPY – wydajność pierwszego przejścia (ang. First Pass Yield). 

• GAN – generatywna sieć przeciwstawna (ang. Generative Adversarial Network). 

• GMP – dobra praktyka produkcyjna (ang. Good Manufacturing Practice). 

• GRU – jednostka bramkowana w sieciach rekurencyjnych (ang. Gated Recurrent Unit). 
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• HACCP – system analizy zagrożeń i krytycznych punktów kontroli (ang. Hazard Analysis and Critical 

Control Points). 

• HFFS – poziome formowanie, napełnianie i zamykanie (ang. Horizontal Form–Fill–Seal). 

• HMI – interfejs człowiek–maszyna (ang. Human–Machine Interface). 

• IEC 62264 – międzynarodowy standard modeli i terminologii integracji systemów przedsiębiorstwa. 

• IIoT – przemysłowy Internet Rzeczy (ang. Industrial Internet of Things). 

• IoT – Internet Rzeczy; sieć połączonych urządzeń wyposażonych w czujniki i oprogramowanie (ang. 

Internet of Things). 

• IP67 – stopień ochrony przed wnikaniem pyłu (6) i wody (7). 

• ISA-95 – międzynarodowy standard integracji systemów produkcyjnych i biznesowych. 

• ISO 22000 – norma zarządzania bezpieczeństwem żywności. 

• ISO/IEC 16022 – norma określająca wymagania dla symboliki Data Matrix. 

• IT – technologia informacyjna (ang. Information Technology). 

• Kanban – metoda zarządzania przepływem prac i produkcji. 

• K-means – algorytm klasteryzacji nienadzorowanej (k-średnich). 

• KPI – kluczowy wskaźnik efektywności (ang. Key Performance Indicator). 

• LabVIEW – graficzne środowisko programistyczne firmy National Instruments. 

• LCA – analiza cyklu życia (ang. Life Cycle Assessment). 

• Lean – koncepcja zarządzania ukierunkowana na eliminację marnotrawstwa. 

• LIMS – system zarządzania informacjami laboratoryjnymi (ang. Laboratory Information Management 

System). 

• LSTM – architektura rekurencyjnych sieci neuronowych do modelowania sekwencji (ang. Long Short-Term 

Memory). 

• MAP – pakowanie w modyfikowanej atmosferze (ang. Modified Atmosphere Packaging). 

• MATLAB – platforma i język programowania dla inżynierów i naukowców. 

• MES – system realizacji i monitorowania produkcji (ang. Manufacturing Execution System). 

• ML – uczenie maszynowe (ang. Machine Learning). 

• MOM – zarządzanie operacjami produkcyjnymi (ang. Manufacturing Operations Management). 

• MQTT – lekki protokół przesyłania komunikatów (ang. Message Queuing Telemetry Transport). 

• MŚP – małe i średnie przedsiębiorstwa. 

• MTBF – średni czas między awariami (ang. Mean Time Between Failures). 

• MTTF – średni czas do uszkodzenia (ang. Mean Time To Failure). 

• MTTR – średni czas naprawy (ang. Mean Time To Repair). 

• MySQL – system zarządzania relacyjnymi bazami danych. 

• NLP – przetwarzanie języka naturalnego (ang. Natural Language Processing). 

• NN – sieć neuronowa (ang. Neural Network). 

• OCR – optyczne rozpoznawanie znaków (ang. Optical Character Recognition). 

• OEE – całkowita efektywność wyposażenia produkcyjnego (ang. Overall Equipment Effectiveness). 

• OPC UA – standard komunikacji przemysłowej (ang. Open Platform Communications Unified 

Architecture). 

• OT – technologia operacyjna; systemy i urządzenia przemysłowe sterujące procesami (np. PLC, HMI, 

SCADA) (ang. Operational Technology). 

• OTD – terminowość realizacji dostaw (ang. On-Time Delivery). 

• PCA – analiza głównych składowych (ang. Principal Component Analysis). 

• PdM – predykcyjne utrzymanie ruchu (ang. Predictive Maintenance). 

• PFS – system automatycznego pakowania (ang. Pick–Fill–Seal). 

• PLC – programowalny sterownik logiczny (ang. Programmable Logic Controller). 

• QR – dwuwymiarowy kod graficzny (ang. Quick Response Code). 

• R – język programowania i środowisko do obliczeń statystycznych i wizualizacji. 

• ResNet – rodzina głębokich sieci rezydualnych (ang. Residual Network). 
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• RFID – identyfikacja radiowa (ang. Radio-Frequency Identification). 

• RL – uczenie ze wzmocnieniem (ang. Reinforcement Learning). 

• RNN – rekurencyjna sieć neuronowa (ang. Recurrent Neural Network). 

• ROC – krzywa charakterystyki klasyfikatora binarnego (ang. Receiver Operating Characteristic). 

• RPA – robotyzacja procesów biznesowych (ang. Robotic Process Automation). 

• RTU – zdalna jednostka telemetryczna (ang. Remote Terminal Unit). 

• SAP – rodzina systemów ERP (niem. Systeme, Anwendungen und Produkte in der Datenverarbeitung). 

• SCADA – system nadzoru i akwizycji danych (ang. Supervisory Control and Data Acquisition). 

• SCARA – robot przegubowy o selektywnej podatności (ang. Selective Compliance Articulated Robot Arm). 

• SCM – zarządzanie łańcuchem dostaw (ang. Supply Chain Management). 

• Six Sigma – metoda doskonalenia jakości oparta na analizie danych. 

• SKU – jednostka asortymentowa (ang. Stock Keeping Unit). 

• SMED – szybka wymiana oprzyrządowania (ang. Single-Minute Exchange of Die). 

• Stretch hood – system pakowania palet elastyczną folią kapturową rozciąganą na ładunek. 

• SVM – maszyna wektorów nośnych (ang. Support Vector Machine). 

• TEEP – całkowita efektywność wykorzystania wyposażenia (ang. Total Effective Equipment Performance). 

• TPM – całkowite produktywne utrzymanie ruchu (ang. Total Productive Maintenance). 

• Traceability – możliwość śledzenia pochodzenia i historii produktu. 

• Traysealer – urządzenie do zgrzewania preformowanych tacek folią. 

• UR – utrzymanie ruchu (ang. Maintenance). 

• VFFS – pionowe formowanie, napełnianie i zamykanie (ang. Vertical Form–Fill–Seal). 

• VR – wirtualna rzeczywistość (ang. Virtual Reality). 

• VSM – mapowanie strumienia wartości (ang. Value Stream Mapping). 

• WMS – system zarządzania magazynem (ang. Warehouse Management System). 

• XAI – wyjaśnialna sztuczna inteligencja (ang. Explainable Artificial Intelligence). 

• XGBoost – algorytm uczenia maszynowego do klasyfikacji i regresji (ang. Extreme Gradient Boosting). 

• YOLO – sieć do detekcji obiektów w czasie rzeczywistym (ang. You Only Look Once). 
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STRESZCZENIE 

 Rozprawa doktorska dotyczy opracowania i wdrożenia inteligentnego systemu nadzorowania 

zautomatyzowanego procesu technologicznego konfekcjonowania wyrobów w przedsiębiorstwie Mróz 

S.A. W procesie konfekcjonowania zidentyfikowano trzy krytyczne operacje: naważanie, pakowanie 

oraz etykietowanie. To właśnie w tych obszarach najczęściej dochodziło do powstawania niezgodności 

jakościowych, strat surowcowych i reklamacji klientów, co wskazało na potrzebę opracowania 

rozwiązania integrującego narzędzia analityczne, systemy wizyjne i metody sztucznej inteligencji. 

 Celem pracy było zaprojektowanie oraz implementacja systemu nadzorowania, który umożliwia 

cyfrową akwizycję danych procesowych, analizę parametrów technologicznych oraz predykcyjne 

wspomaganie sterowania procesem. Rozwiązanie miało zapewnić wczesne wykrywanie odchyleń, 

ograniczenie liczby badań niszczących, a także wsparcie decyzyjne operatorów w czasie rzeczywistym. 

Opracowana architektura obejmuje cztery warstwy (akwizycji, analityczną, decyzyjną i wizualizacyjną) 

oraz pięć modułów funkcjonalnych, dedykowanych poszczególnym obszarom procesu. 

 W ramach badań opracowano i zweryfikowano kilka kluczowych modeli predykcyjnych  

i diagnostycznych. Najważniejszym osiągnięciem był model predykcyjny oparty na regresji logistycznej 

służący do prognozowania ryzyka mikronieszczelności w procesie pakowania. Równolegle zbudowano 

i zwalidowano klasyfikator wizyjny oparty na konwolucyjnych sieciach neuronowych. Uzupełnieniem 

tych rozwiązań był model diagnostyczny analizujący zmienność temperatury elementów grzewczych 

maszyn pakujących, wspierający ocenę stabilności procesu. W module etykietowania zastosowano 

algorytmy OCR i analizy kodów, które umożliwiły pełną automatyzację kontroli treści etykiet i jakości 

nadruków. Dodatkowo prace obejmowały budowę i kategoryzację bazy danych obrazowych, 

przygotowanie zbiorów treningowych i walidacyjnych, zastosowanie metod augmentacji oraz 

przeprowadzenie walidacji systemu w warunkach przemysłowych. 

 Walidacja w rzeczywistym środowisku produkcyjnym wykazała znaczną poprawę stabilności  

i efektywności procesu. Zaobserwowano spadek odchyleń w masie porcji, wzrost wydajności linii oraz 

poprawę wskaźników efektywności wykorzystania maszyn, a także redukcję reklamacji i strat 

surowcowych. Wyniki te jednoznacznie potwierdziły skuteczność opracowanego rozwiązania. 

 Rezultaty badań mają wymiar poznawczy i utylitarny. W aspekcie naukowym zidentyfikowano 

zależności pomiędzy parametrami technologicznymi a stabilnością procesu, a także potwierdzono 

możliwość zastosowania metod sztucznej inteligencji w środowisku przemysłowym. W wymiarze 

aplikacyjnym rozprawa stanowi przykład skutecznego wdrożenia architektury warstwowej i modułowej 

zgodnie z koncepcją Przemysłu 4.0, wskazując jednocześnie na jej potencjał adaptacji do innych linii 

technologicznych i branż przemysłowych. 
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ABSTRACT  

 This doctoral dissertation concerns the development and implementation of an intelligent monitoring 

system for the automated technological process of product packaging at Mróz S.A. Within the packaging 

process, three critical operations were identified: weighing, sealing, and labelling. These stages were 

most frequently associated with quality nonconformities, raw material losses, and customer complaints, 

which highlighted the need for a solution integrating analytical tools, vision systems, and artificial 

intelligence methods. 

 The objective of the dissertation was to design and implement a monitoring system enabling digital 

acquisition of process data, analysis of technological parameters, and predictive support for process 

control. The solution was intended to ensure early detection of deviations, reduce the number  

of destructive tests, and provide real-time decision support for operators. The proposed architecture 

comprises four layers (acquisition, analytical, decision-making, and visualization) and five functional 

modules dedicated to specific process areas. 

 As part of the research, a series of predictive and diagnostic models were developed and validated. 

The most significant achievements include a logistic regression model for predicting micro-leakages,  

a diagnostic model analysing temperature variability of the heating elements of sealing machines, and 

convolutional neural networks (CNN) for classifying packaging defects. In the labelling module, OCR 

algorithms and code analysis were applied, enabling full automation of label content and print quality 

inspection. Furthermore, the research encompassed the construction and categorization of an image 

database, preparation of training and validation datasets, the application of data augmentation 

techniques, and the industrial validation of the system. 

 Validation in a real production environment demonstrated a significant improvement in process 

stability and efficiency. Reductions in portion weight deviations were observed, along with increased 

line throughput, enhanced equipment effectiveness indicators, and a decline in customer complaints and 

raw material losses. These outcomes clearly confirmed the effectiveness of the proposed solution. 

 The results of the dissertation have both cognitive and utilitarian dimensions. From a scientific 

perspective, dependencies between technological parameters and process stability were identified and 

quantified, and the applicability of artificial intelligence methods in industrial environments was 

confirmed. From a practical perspective, the dissertation provides an example of a successful 

implementation of a layered and modular system architecture in line with the Industry 4.0 concept, while 

also demonstrating the potential for adaptation to other production lines and industrial sectors. 
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1. Wprowadzenie 

1.1. Geneza tematu pracy 

 Dynamiczny rozwój technologii produkcyjnych w ostatnich dekadach, związany z wdrażaniem 

koncepcji Przemysłu 4.0, doprowadził do istotnych przemian w sposobie organizacji i nadzorowania 

procesów technologicznych. Szczególnego znaczenia nabiera tu proces konfekcjonowania, rozumiany 

jako dozowanie, pakowanie, kompletowanie, etykietowanie i przygotowanie wyrobów do dystrybucji, 

który stanowi jeden z kluczowych etapów w łańcuchu wartości przedsiębiorstwa produkcyjnego. Jest 

obszarem, w którym spotykają się wymagania dotyczące jakości, elastyczności i terminowości,  

w którym wyroby uzyskują swoją ostateczną formę użytkową, handlową i estetyczną. Proces ten, mimo 

rosnącej automatyzacji, charakteryzuje się wysoką wrażliwością na zakłócenia, wynikającą m.in.  

z dużej zmienności zleceń, krótkich serii produkcyjnych oraz częstych przezbrojeń (Coles i in., 2003; 

Yan i in., 2022). Dodatkowym wyzwaniem jest konieczność elastycznego dostosowywania się do 

indywidualnych wymagań odbiorców, które obejmują zróżnicowane formaty opakowań, specyficzne 

oznakowanie czy niestandardowe zestawienia produktów. Czynniki te sprawiają, że proces 

konfekcjonowania staje się szczególnie podatny na błędy, opóźnienia oraz straty materiałowe, co wprost 

przekłada się na koszty operacyjne i poziom satysfakcji klienta. 

 W praktyce przemysłowej, zwłaszcza w sektorze małych i średnich przedsiębiorstw, dostrzegalna 

jest potrzeba wdrożenia rozwiązań pozwalających na inteligentne, zintegrowane nadzorowanie linii 

konfekcjonowania, które obejmowałoby zarówno monitorowanie stanu maszyn i urządzeń, jak i ocenę 

jakości wytwarzanych wyrobów w czasie rzeczywistym. Z jednej strony klasyczne systemy automatyki 

i kontroli jakości okazują się niewystarczające w warunkach wysokiej zmienności i rosnącej złożoności 

procesów. Z drugiej natomiast, brak narzędzi zapewniających bieżące monitorowanie kluczowych 

wskaźników takich jak wydajność linii, dostępność maszyn czy wskaźniki jakościowe prowadzi do 

sytuacji, w których przedsiębiorstwa reagują na problemy dopiero po ich wystąpieniu, zamiast je 

przewidywać i eliminować (Fantozzi i in., 2023; Popescu i in., 2022). W tym kontekście niezbędne staje 

się wykorzystanie narzędzi sztucznej inteligencji, metod uczenia maszynowego oraz integracja 

systemów pomiarowych z rozwiązaniami cyfrowymi, umożliwiającymi predykcyjne podejmowanie 

decyzji i automatyczne reagowanie na odchylenia od stanu pożądanego. Dzięki temu przedsiębiorstwa 

mogą przejść od nadzorowania reaktywnego, opartego na interwencji w sytuacjach kryzysowych, do 

nadzorowania proaktywnego i predykcyjnego, którego celem jest minimalizacja zakłóceń oraz 

maksymalizacja efektywności procesów (Ayvaz i in., 2021). 

 Z perspektywy przedsiębiorstwa Mróz S.A. będącego przedmiotem badań, konfekcjonowanie pełni 

funkcję strategiczną. Jest obszarem, który umożliwia realizację zasad personalizacji produkcji  

i elastycznego dostosowania do wymagań klientów. Stanowi zatem, ze względu na ofertę produktową 

przedsiębiorstwa istotne narzędzie budowania przewagi konkurencyjnej. Analiza funkcjonowania 

przedsiębiorstwa wykazała, że pomimo zastosowania zaawansowanych linii pakujących, utrzymanie 
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stabilności procesu wciąż napotyka istotne trudności. Problemy ujawniały się m.in. w postaci odchyleń 

masy porcji (niedowagi lub nadwagi), błędów etykietowania (np. brak lub uszkodzenie etykiety, 

nieprawidłowe dane) czy nieszczelności opakowań jednostkowych. Każdy z tych problemów rodzi 

konkretne zagrożenia dla efektywności i jakości procesu. Nawet nieznaczne odchylenia w naważaniu 

skutkują stratami surowcowymi i podwyższeniem kosztów produkcji, błędy etykietowania prowadzą do 

reklamacji i obniżenia wiarygodności przedsiębiorstwa w oczach klientów, natomiast awarie urządzeń 

konfekcjonujących powodują spadek wskaźników efektywności, przestoje produkcyjne i wzrost 

kosztów eksploatacyjnych. Przedstawione powyżej wyzwania wskazują na potrzebę opracowania 

inteligentnego systemu nadzorowania zautomatyzowanego procesu technologicznego 

konfekcjonowania w przedsiębiorstwie, który umożliwiłby integrację danych z różnych etapów 

procesu, zastosowanie metod sztucznej inteligencji oraz ich implementację w przedsiębiorstwie. Takie 

rozwiązanie pozwoli nie tylko podnieść stabilność i powtarzalność produkcji, ale również ograniczyć 

straty materiałowe, zredukować liczbę reklamacji i zwiększyć konkurencyjność przedsiębiorstwa  

w warunkach dynamicznie zmieniającego się rynku. 

 Temat pracy pt. „Inteligentny system nadzorowania zautomatyzowanego procesu technologicznego 

konfekcjonowania wyrobów” powstał więc jako odpowiedź na wyzwania przedsiębiorstwa Mróz S.A. 

oraz zapotrzebowanie na nowatorskie rozwiązania łączące perspektywę inżynierii mechanicznej  

z narzędziami sztucznej inteligencji i cyfrowymi technologiami nadzorowania procesów. Celem badań 

było opracowanie koncepcji oraz implementacja systemu, który nie tylko poprawia efektywność  

i stabilność procesu konfekcjonowania, lecz także zapewnia zgodność z wymogami jakościowymi oraz 

odporność na zakłócenia w zmiennym otoczeniu rynkowym. 

1.2. Problem badawczy 

 Analiza stanu wiedzy i obserwacje praktyki przemysłowej prowadzą do wniosku, że proces 

konfekcjonowania, mimo swojego kluczowego znaczenia, pozostaje stosunkowo skromnie opisany  

w literaturze naukowej. Większość dostępnych publikacji naukowych dotyczących konfekcjonowania 

koncentruje się na wybranych operacjach, takich jak pakowanie czy etykietowanie, traktując je w sposób 

izolowany, bez uwzględnienia całego procesu jako spójnego i złożonego systemu technologicznego. 

Takie fragmentaryczne podejście ogranicza możliwości opracowania rozwiązań integrujących 

poszczególne podsystemy i tym samym utrudnia kompleksowe nadzorowanie procesu. Ponadto 

przegląd literatury wskazuje na wyraźną dominację badań o charakterze teoretycznym i symulacyjnym 

nad badaniami prowadzonymi w rzeczywistych warunkach przemysłowych, co dodatkowo potwierdza 

istnienie luki badawczej w tym obszarze. Wiele z zaproponowanych rozwiązań, choć interesujących, 

nie zostało poddanych praktycznej weryfikacji w zakładach produkcyjnych. Ogranicza to możliwość 

oceny ich faktycznej skuteczności, niezawodności i przydatności dla operatorów czy kadry technicznej.  

Jak zauważają Weichert i in. (2019) przejście od modelu laboratoryjnego do wdrożenia 

przemysłowego stanowi wciąż istotne wyzwanie, a właśnie ten etap przesądza o realnej wartości 
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proponowanych w literaturze rozwiązań. Kolejnym aspektem, na który należy zwrócić uwagę jest brak 

podejścia integracyjnego, które łączyłoby akwizycję danych z różnych źródeł np. wag, czujników 

procesowych, systemów wizyjnych z analizą predykcyjną i bieżącym wspomaganiem decyzji 

operatorów. Dostępne są liczne technologie cząstkowe, które osiągają wysoką skuteczność w swoich 

obszarach (np. algorytmy głębokiego uczenia w analizie obrazu), ale ich działanie pozostaje izolowane 

od innych modułów procesu. Brakuje systemu, który spinałby te elementy w jeden strumień 

informacyjny i udostępniał wnioski w czasie rzeczywistym na potrzeby stabilizacji procesu i szybkiego 

reagowania na odchylenia (Sundaram i in., 2023). 

 Biorąc pod uwagę powyższe, problem badawczy niniejszej rozprawy, można zdefiniować 

następująco: jak zaprojektować i wdrożyć inteligentny system nadzorowania procesu 

konfekcjonowania, który integruje różne źródła danych, wykorzystuje metody analityczne  

i sztucznej inteligencji oraz wspiera operatorów w podejmowaniu decyzji w czasie rzeczywistym? 

 Dla tak sformułowanego problemu badawczego zdefiniowano trzy pytania badawcze: 

1. Jakie czynniki determinują efektywność i stabilność procesu konfekcjonowania  

oraz charakterystyki jakościowe wyrobów? 

2. Jakie dane procesowe są kluczowe dla skutecznego identyfikowania niezgodności  

w zautomatyzowanym procesie konfekcjonowania? 

3. Jakie narzędzia i metody będą w sposób skuteczny wspierać nadzorowanie parametrów procesu 

konfekcjonowania? 

 Odpowiedź na powyższe pytania umożliwi uzupełnienie zidentyfikowanych ograniczeń dotychczas 

zaproponowanych rozwiązań oraz opracowanie koncepcji, która łączy wymiar naukowy,  

tj. identyfikację zależności między parametrami procesu a jego stabilnością, z wymiarem aplikacyjnym, 

obejmującym wdrożenie i ocenę systemu nadzorowania procesu konfekcjonowania w warunkach 

rzeczywistych konkretnego przedsiębiorstwa. 

1.3. Cel pracy 

Tradycyjne systemy nadzorowania mają ograniczone możliwości w zakresie predykcyjnego 

wykrywania nieprawidłowości oraz dostosowywania parametrów operacyjnych do dynamicznie 

zmieniających się warunków. W kontekście transformacji cyfrowej szczególnego znaczenia nabiera 

wykorzystanie zaawansowanej analityki danych, sztucznej inteligencji oraz systemów wspierających 

decyzje w celu zapewnienia stabilności, jakości i efektywności procesów. 

Celem pracy doktorskiej jest opracowanie koncepcji oraz weryfikacja w warunkach 

przemysłowych inteligentnego systemu nadzorowania zautomatyzowanego procesu konfekcjonowania 

wyrobów, który wykorzystuje metody zaawansowanej analityki danych i sztucznej inteligencji do: 

• wczesnego wykrywania nieprawidłowości w przebiegu procesu, 

• bieżącej oceny krytycznych charakterystyk jakościowych wyrobu, 

• wspierania procesu decyzyjnego operatorów i personelu technicznego. 
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W pracy przewidziano przeprowadzenie badań niezbędnych do budowy potrzebnych modeli 

decyzyjnych. Realizacja prac badawczo-wdrożeniowych ma charakter aplikacyjny. Realizowane będą 

z wykorzystaniem rzeczywistych danych oraz infrastruktury przemysłowej badanego przedsiębiorstwa, 

z uwzględnieniem występujących w nim ograniczeń technicznych i organizacyjnych. Dla osiągnięcia 

wskazanego celu przyjęto następujące cele szczegółowe: 

1. Identyfikacja krytycznych operacji i parametrów procesu konfekcjonowania, które wymagają 

nadzorowania. 

2. Określenie i ustandaryzowanie zbioru parametrów technologicznych o decydującym wpływie na 

stabilność procesu oraz jakość wyrobów (wartości nominalne, tolerancje, progi alarmowe oraz ich 

odpowiedzialność za odchylenia). 

3. Zaprojektowanie i uruchomienie cyfrowej akwizycji danych z urządzeń i czujników linii, 

zapewniającej ciągłość zapisu, jednoznaczną identyfikację partii i synchronizację czasową. 

4. Dobór i weryfikacja metod nadzorowania (w tym modeli predykcyjnych i klasyfikacyjnych), 

umożliwiających detekcję odchyleń w czasie rzeczywistym oraz ocenę ryzyka powstania 

niezgodności. 

5. Integracja modułów w spójny system nadzorowania (wizualizacja, alarmowanie, raportowanie), 

wraz z definicją ścieżki decyzyjnej dla operatorów i służb technicznych. 

6. Walidacja systemu w środowisku produkcyjnym na podstawie uzgodnionych mierników (m.in. 

wskaźniki jakości i efektywności procesu). 

 Cele te, poprzez zaprojektowanie i integrację rozwiązań, tworzą układ prowadzący od identyfikacji 

kluczowych uwarunkowań procesu konfekcjonowania, poprzez wskazanie sposobu jego (procesu) 

poprawy, aż do ich weryfikacji w warunkach rzeczywistej produkcji.  

1.4. Struktura pracy 

 W rozdziale pierwszym przedstawiono tło problematyki badawczej, wskazując na rosnącą 

złożoność systemów produkcyjnych oraz szczególną rolę procesu konfekcjonowania jako etapu 

kluczowego dla zapewnienia jakości i efektywności wytwarzania. Zaprezentowano genezę tematu, 

problem i pytania badawcze oraz sformułowano cel główny wraz z celami szczegółowymi. Rozdział 

kończy się opisem struktury rozprawy. 

 Rozdział drugi obejmuje przegląd stanu wiedzy dotyczący inteligentnego nadzorowania procesów 

produkcyjnych, ze szczególnym uwzględnieniem procesu konfekcjonowania. Omówiono ewolucję 

podejść do nadzoru, kluczowe funkcje systemów oraz ekosystem technologiczny obejmujący integrację 

warstw architektury z systemami SCADA, MES i ERP, a także rozwiązania oparte na IoT, chmurze 

obliczeniowej i sztucznej inteligencji. Przedstawiono metody oceny skuteczności nadzorowania  

z wykorzystaniem wskaźników KPI oraz determinanty efektywności technicznej, organizacyjnej  

i informacyjnej. W drugiej części rozdziału scharakteryzowano proces konfekcjonowania, wskazując 

typowe problemy jakościowe i operacyjne oraz dostępne metody ich ograniczania. Synteza literatury 



  

15 

 

pozwoliła na zdefiniowanie ograniczeń badawczych i potrzeb wdrożeniowych w kontekście koncepcji 

Przemysłu 4.0 i 5.0. 

 W rozdziale trzecim zaprezentowano koncepcję inteligentnego systemu nadzorowania oraz 

założenia projektowe związane z jego implementacją. Opisano środowisko wdrożeniowe, obejmujące 

charakterystykę zakładu produkcyjnego, infrastrukturę linii badawczej oraz bariery techniczne  

i organizacyjne. Zidentyfikowano problemy występujące w operacjach naważania, pakowania  

i etykietowania, a następnie opracowano koncepcję systemu w oparciu o strukturę warstwową  

i modułową. Przedstawiono główne wymagania projektowe oraz opisano założenia pięciu modułów 

funkcjonalnych, które razem tworzą spójną koncepcję systemu nadzorowania. 

 Rozdział czwarty dotyczy budowy systemu i przejścia od koncepcji do realizacji. Szczegółowo 

opisano pięć modułów funkcjonalnych: nadzorowanie masy porcji, detekcję nieszczelności metodami 

wizyjnymi („nieszczelności I”), predykcyjną ocenę ryzyka występowania mikronieszczelności 

(„nieszczelności II”), kontrolę etykiet i ich treści oraz automatyczny odrzut wyrobów niezgodnych. 

Każdy z modułów został osadzony w czterowarstwowej architekturze systemu, a w opisie ujęto 

technologie, algorytmy i modele, w tym regresję logistyczną i konwolucyjne sieci neuronowe.  

W rozdziale omówiono również aspekty cyberbezpieczeństwa i ochrony danych. 

 Kolejny, rozdział piąty przedstawia walidację systemu w warunkach przemysłowych. Oceniono 

skuteczność poszczególnych modułów i systemu jako całości na podstawie danych z lat 2021–2025. 

Analiza wykazała poprawę wskaźników jakości i efektywności, redukcję przeważeń surowca oraz 

skuteczność predykcji i klasyfikacji wad. 

 W rozdziale szóstym zaprezentowano podsumowanie wyników oraz wnioski końcowe. 

Przedstawiono wnioski poznawcze, odnoszące się do identyfikacji zależności między parametrami 

procesu a jego stabilnością oraz wnioski utylitarne, związane z opracowaniem i wdrożeniem systemu 

spełniającego cele praktyczne. Omówiono ograniczenia badań oraz wskazano kierunki dalszych prac. 
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2. Przegląd stanu wiedzy – badania literaturowe  

2.1. Nadzorowanie procesów produkcyjnych 

2.1.1. Od manualnego nadzoru do Przemysłu 5.0 

 Rozwój systemów produkcyjnych jest nierozerwalnie związany z postępem technologicznym  

i zmieniającymi się wymaganiami rynku. Każda kolejna dekada przynosiła rozwiązania, które nie tylko 

usprawniały procesy wytwórcze, lecz także stopniowo zmieniały sposób ich nadzorowania, rozumiany 

jako złożony proces ukierunkowanego oddziaływania, obejmujący dostarczanie wskazówek, 

wyznaczanie kierunków działań oraz sprawowanie kontroli w celu realizacji założonych celów 

organizacyjnych i zarządczych (Mayasari i in., 2023). Skuteczność nadzorowania zależy od jakości 

monitorowania i diagnozowania. Monitorowanie dostarcza danych, które są analizowane podczas 

diagnozowania, a wyniki tej analizy są wykorzystywane do podejmowania decyzji w procesie 

nadzorowania. 

 W literaturze z zakresu inżynierii produkcji nadzór jest traktowany jako proces zarządzania 

przepływem informacji i podejmowania decyzji na podstawie bieżących danych o stanie maszyn, 

zasobów i jakości wytwarzanych wyrobów (Baines, 2006). W ujęciu koncepcji Przemysłu 4.0, 

nadzorowanie obejmuje również wykorzystanie technologii cyfrowych, analityki danych i sztucznej 

inteligencji do predykcyjnego sterowania procesami oraz zapobiegania zakłóceniom (Zhong i in., 2017). 

Proces nadzorowania charakteryzuje się koniecznością planowania, wdrażania, monitorowania  

i ewaluacji działań, co umożliwia nie tylko formułowanie skutecznych polityk i decyzji zarządczych, 

lecz także bieżącą ocenę przestrzegania przepisów oraz wprowadzanie korekt adekwatnych do 

zmieniających się uwarunkowań (Mayasari i in., 2023). Skuteczność nadzorowania zależy od jakości 

monitorowania i diagnozowania. 

 Biorąc pod uwagę powyższe, w pracy nadzorowanie procesów produkcyjnych rozumiane będzie 

jako zorganizowany system działań menedżerskich i technicznych, polegający na bieżącym 

monitorowaniu, analizowaniu i kontrolowaniu parametrów procesu wytwórczego, w celu utrzymania 

jego stabilności, jakości i efektywności, przy jednoczesnym spełnieniu wymagań dotyczących 

bezpieczeństwa, środowiska i kosztów. Natomiast inteligentne nadzorowanie procesów 

produkcyjnych to wykorzystanie zaawansowanych technologii cyfrowych, metod sztucznej 

inteligencji i analityki danych do monitorowania, prognozowania i optymalizowania przebiegu 

produkcji. Inteligentny system nadzorowania to zintegrowany układ metod, narzędzi i technologii 

cyfrowych, którego celem jest monitorowanie, analiza, diagnozowanie oraz prognozowanie przebiegu 

procesów produkcyjnych w czasie rzeczywistym. Jego kluczową cechą jest autonomiczność  

w reagowaniu na odchylenia, optymalizacja wykorzystania zasobów oraz doskonalenie procesów 

wytwórczych, przy jednoczesnym uwzględnianiu aspektów jakości, bezpieczeństwa, kosztów  

i zrównoważonego rozwoju. 
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 Nowoczesne systemy nadzorowania wykorzystują automatyzację, aby ograniczyć ingerencję 

człowieka, zwiększając w ten sposób wydajność i zmniejszając prawdopodobieństwo wystąpienia 

błędów (Belmonte i in., 2006), wykorzystują zaawansowane technologie, takie jak Big Data, 

przetwarzanie w chmurze i IoT, aby udoskonalić możliwości gromadzenia, analizowania i raportowania 

danych (Xu i in., 2020). Integracja zaawansowanych technologii Przemysłu 4.0 z istniejącymi 

systemami produkcyjnymi, szczególnie w małych i średnich przedsiębiorstwach (MŚP), może być 

skomplikowana i kosztowna (Singh i in., 2024) ponieważ ich wdrożenie wymaga znacznych inwestycji 

w nowy sprzęt, infrastrukturę i szkolenia, co może stanowić barierę dla niektórych firm (Bazen i in., 

2022). Inteligentny system nadzorowania linii produkcyjnej charakteryzuje się integracją 

zaawansowanych technologii (Cheng i in., 2021), możliwościami monitorowania i diagnozowania  

w czasie rzeczywistym (Fang i in., 2025), zdolnością adaptacji (Olalere i in., 2020), ulepszonymi 

procesami decyzyjnymi (Guo, 2023) oraz koncentracją na poprawie jakości i wydajności (Y. Xu i in., 

2024). 

2.1.2. Funkcje inteligentnego nadzorowania procesów 

 W literaturze podkreśla się, że skuteczność nowoczesnych systemów produkcyjnych zależy w dużej 

mierze od funkcji realizowanych przez systemy nadzorowania. To one decydują o możliwości 

utrzymania ciągłości procesów, zapewnienia ich bezpieczeństwa oraz utrzymania wysokiej jakości 

wyrobów. Funkcje te odzwierciedlają praktyczne wykorzystanie zaawansowanych komponentów 

technicznych i algorytmicznych w codziennej pracy zakładów przemysłowych. 

 Jedną z podstawowych funkcji inteligentnych systemów nadzorowania jest monitorowanie danych 

w czasie rzeczywistym. Dzięki integracji czujników środowiskowych i procesowych możliwe jest 

nieprzerwane śledzenie parametrów krytycznych, takich jak temperatura, wilgotność, ciśnienie czy 

stężenia substancji chemicznych, a także analiza warunków eksploatacyjnych maszyn i urządzeń (Chen 

i in., 2022; Xia i in., 2016). Ciągła rejestracja i wizualizacja danych pozwalają na szybkie wykrywanie 

odchyleń od wartości referencyjnych i natychmiastową reakcję operatorów. Kolejną kluczową funkcją 

jest diagnostyka anomalii. Inteligentne systemy umożliwiają automatyczne identyfikowanie  

i diagnozowanie usterek w czasie rzeczywistym, co znacząco obniża ryzyko awarii i wypadków, a tym 

samym poprawia bezpieczeństwo eksploatacji (Lu i in., 2025). Zastosowanie algorytmów detekcji 

anomalii pozwala dodatkowo na identyfikację nietypowych stanów pracy i wczesne ostrzeganie  

o potencjalnych awariach (Mirzaraxmedova i in., 2019). Dzięki temu systemy te pełnią funkcję 

predykcyjną, wspierając utrzymanie ruchu w modelu prewencyjnym. Nieodłączną częścią 

inteligentnego nadzorowania jest przetwarzanie i analiza danych. Systemy gromadzą dane  

w scentralizowanych bazach, umożliwiają ich długoterminową archiwizację i analizę porównawczą, co 

pozwala na identyfikację trendów oraz powtarzających się problemów (Rymarczyk i in., 2021). Coraz 

częściej stosowane są tu metody sztucznej inteligencji oraz uczenia maszynowego, które umożliwiają 

tworzenie modeli predykcyjnych oraz automatyczną klasyfikację zdarzeń procesowych (Qu & Tao, 
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2013). Nowoczesne rozwiązania oferują również zdalne monitorowanie i sterowanie procesami. 

Dzięki wykorzystaniu sieci bezprzewodowych i platform chmurowych dane mogą być przesyłane  

i analizowane w dowolnym miejscu, a operatorzy uzyskują dostęp do kluczowych informacji z poziomu 

urządzeń mobilnych (Xia i in., 2016; Pang i in., 2018). Rozwiązania te wspierają integrację 

rozproszonych instalacji i skracają czas reakcji w przypadku awarii, jednocześnie zmniejszając koszty 

eksploatacyjne. Systemy inteligentnego nadzorowania realizują także funkcje związane ze 

wspomaganiem procesu decyzyjnego. Integracja metod analitycznych, takich jak logika rozmyta, 

algorytmy predykcyjne czy modele optymalizacyjne, umożliwia generowanie rekomendacji działań 

korygujących oraz planowanie przeglądów i konserwacji (Lee, 2007; Chang i in., 2023). Funkcje te 

pozwalają operatorom i menedżerom podejmować decyzje oparte na danych, a nie jedynie na intuicji 

czy doświadczeniu. Szczególnie istotną funkcją jest alarmowanie i powiadamianie. Inteligentne 

systemy wyposażone są w mechanizmy umożliwiające automatyczne alarmowanie o wykrytych 

anomaliach czy krytycznych odchyleniach parametrów od normy (Zhu i in., 2012; Chou i in., 2017). 

Funkcja ta znacząco podnosi poziom bezpieczeństwa, umożliwiając szybką reakcję personelu  

i ograniczenie strat wynikających z awarii. Ostatnim, ale niezwykle ważnym obszarem funkcjonalnym 

jest integracja i interoperacyjność. Inteligentne systemy nadzorowania bazują na architekturach 

wieloagentowych i hybrydowych modelach analitycznych, które umożliwiają współpracę różnych 

komponentów w sposób rozproszony i autonomiczny. Dzięki temu mogą one elastycznie reagować na 

zmienne warunki pracy i zwiększać skalowalność rozwiązania. 

 Rysunek 2.1 przedstawia zestawienie kluczowych funkcji realizowanych przez inteligentne 

systemy nadzorowania. Uwzględniono zarówno funkcje operacyjne, takie jak monitorowanie w czasie 

rzeczywistym, wykrywanie usterek, wczesne ostrzeganie, alarmowanie czy zdalne sterowanie, jak  

i funkcje wspierające proces decyzyjny, obejmujące analizę i interpretację danych, prognozowanie, 

klasyfikację zdarzeń, generowanie rekomendacji oraz planowanie działań konserwacyjnych. 

Zintegrowane działanie tych elementów pozwala systemowi nie tylko obserwować procesy, ale również 

je interpretować, przewidywać potencjalne zagrożenia oraz inicjować działania zapobiegawcze  

i korygujące. 
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Rysunek 2.1. Funkcje inteligentnych systemów nadzorowania (opracowanie własne na podstawie: Pang i in., 

2018; Mirzaraxmedova i in., 2019; Chang i in., 2023). 

2.1.3. Systemy i technologie wspomagające nadzorowanie procesów produkcyjnych 

 Systemy nadzorowania procesów produkcyjnych to rozwiązania organizacyjno-techniczne służące 

do bieżącego monitorowania, kontrolowania i analizowania przebiegu procesów wytwórczych.  

Ich zadaniem jest zapewnienie zgodności realizacji produkcji z przyjętymi wymaganiami jakościowymi, 

kosztowymi, terminowymi i środowiskowymi. Mogą one funkcjonować na różnych poziomach 

złożoności, od klasycznych systemów kontroli jakości i nadzoru operatorskiego, po zaawansowane 

rozwiązania oparte na systemach cyber-fizycznych i sztucznej inteligencji. Hierarchiczną strukturę 

systemów wg. ISA-95 przedstawiono na Rysunku 2.2. ISA-95, to międzynarodowy standard integracji 

systemów przedsiębiorstwa i sterowania (Enterprise-Control System Integration), który zapewnia ramy 

dla komunikacji i wymiany danych między różnymi poziomami automatyzacji produkcji. Standard 

definiuje hierarchię procesów produkcyjnych (tzw. piramidę ISA-95), ułatwiając przepływ informacji 

(Lang i in., 2020). 
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Rysunek 2.2. Piramida systemów nadzorowania procesów produkcyjnych według standardu ISA-95 

(opracowanie własne na podstawie: Lang i in., 2020; van der Pas i in., 2025). 

 Podstawę piramidy stanowią urządzenia i procesy fizyczne realizowane w przedsiębiorstwie.  

Maszyny i linie produkcyjne generują sygnały będące fundamentem całego systemu nadzorowania.  

Czujniki (np. temperatury, ciśnienia, drgań, wilgotności) zbierają dane z procesów technologicznych. 

Bez wiarygodnych danych wejściowych nie jest możliwe skuteczne monitorowanie ani analiza 

procesów. Na kolejnym poziomie znajdują się PLC (Programmable Logic Controllers), 

odpowiedzialne za automatyczne sterowanie maszynami i urządzeniami. Ich zadaniem jest realizacja 

algorytmów sterowania, zapewniających prawidłowy przebieg operacji technologicznych (Shrivastava 

i in., 2025). Ważnym elementem jest także zapewnienie niezawodnej komunikacji pomiędzy warstwami 

systemu np. poprzez preferowane obecnie ze względu na uniwersalność OPC UA (Open Platform 

Communications Unified Architecture) (Paul, 2024).  

 Wyżej usytuowane są systemy SCADA/HMI (Supervisory Control and Data Acquisition / 

Human-Machine Interface). Systemy te stanowią jeden z kluczowych elementów architektury 

automatyki przemysłowej, umożliwiając nadzór, wizualizację i kontrolę złożonych procesów 

technologicznych w czasie rzeczywistym. Ich głównym zadaniem jest gromadzenie danych z urządzeń 

obiektowych (np. czujników, sterowników PLC), przetwarzanie tych danych oraz udostępnianie 

operatorowi interfejsów do monitorowania i ingerencji w proces (Popescu i in., 2022; Grbac i in., 2022). 

Typowa architektura SCADA składa się z czterech podstawowych komponentów: jednostek zdalnych 

(RTU - Remote Terminal Unit), sterowników PLC, infrastruktury komunikacyjnej oraz systemu 

nadzorczego z interfejsem HMI. SCADA umożliwia centralne zarządzanie dużą liczbą rozproszonych 

obiektów technologicznych, przy zachowaniu ciągłości i bezpieczeństwa procesu (Thoben i in., 2017; 

Sverko i in., 2022). Jedną z głównych zalet tych systemów jest możliwość długoterminowej archiwizacji 

danych procesowych, co pozwala na tworzenie raportów, analizę trendów oraz wspomaganie działań 



  

21 

 

predykcyjnych w zakresie utrzymania ruchu (Lidong i in., 2016; Trzmiel i in., 2018). Wysoka 

skalowalność SCADA sprawia, że systemy te znajdują zastosowanie zarówno w małych instalacjach, 

jak i w rozległych sieciach przemysłowych, np. w energetyce, przemyśle chemicznym, wodno-

kanalizacyjnym, hutnictwie czy motoryzacji (Popescu i in., 2022; Sverko, Grbac i in., 2022). 

 Kolejną warstwę tworzą systemy MES (Manufacturing Execution Systems) które odgrywają 

kluczową rolę w operacyjnym zarządzaniu produkcją, umożliwiając bezpośrednie sterowanie, 

monitorowanie i raportowanie działań realizowanych na poziomie hali produkcyjnej.  

W przedsiębiorstwach bywa, że SCADA i MES działają równolegle, a dane są wymieniane przez 

interfejsy OPC UA, MQTT czy AP. Ich podstawowym zadaniem jest zapewnienie płynnego przepływu 

informacji między warstwą zarządzania przedsiębiorstwem (systemy ERP), a warstwą wykonawczą 

(sterowniki PLC, SCADA) (Chohan i in., 2022; Mantravadi i in., 2023). MES integruje dane pochodzące 

z maszyn, operatorów i systemów automatyki, umożliwiając kompleksową kontrolę nad przebiegiem 

zleceń produkcyjnych w czasie rzeczywistym. Dzięki temu możliwe jest bieżące śledzenie postępu prac, 

analiza wskaźników wydajności (np. OEE), kontrola jakości oraz zarządzanie zasobami  

i harmonogramami (Mantravadi i in., 2023). Systemy tego typu wspierają podejmowanie decyzji na 

poziomie operacyjnym, eliminując opóźnienia wynikające z ręcznego przetwarzania danych oraz 

minimalizując ryzyko błędów wynikających z niewłaściwego raportowania lub braku aktualnych 

informacji (Chohan i in., 2022). Współczesne rozwiązania MES są również zgodne z koncepcją 

Przemysłu 4.0, coraz częściej wykorzystują technologie takie jak IIoT, czy metody sztucznej 

inteligencji, co umożliwia dynamiczne dostosowanie planów produkcyjnych, predykcyjną analizę 

zakłóceń oraz optymalizację procesów w oparciu o rzeczywiste dane (Qi i in., 2019). Ponadto MES 

zapewnia zgodność procesów z normami jakościowymi, regulacjami branżowymi oraz wymogami 

dotyczącymi identyfikowalności (traceability), co czyni go nieodzownym elementem cyfrowego 

ekosystemu produkcyjnego (Mantravadi i in., 2023; Cate i in., 2025). 

 Na szczycie piramidy znajduje się warstwa ERP (Enterprise Resource Planning) która pełni 

kluczową rolę w zarządzaniu zasobami przedsiębiorstwa, umożliwiając kompleksową integrację 

obszarów produkcji, logistyki, finansów, magazynowania, zaopatrzenia czy kadr. W kontekście 

przemysłowym, ERP stanowi nadrzędny poziom systemów informatycznych, który komunikuje się  

z niższymi warstwami (np. MES, SCADA), konsolidując dane operacyjne i strategiczne w jednym 

środowisku (Pop, 2020; Sai Avvaru i in., 2020). Zasadniczym celem ERP jest centralizacja  

i automatyzacja przepływu informacji pomiędzy poszczególnymi działami przedsiębiorstwa. Poprzez 

bieżący dostęp do ustandaryzowanych i aktualnych danych, systemy te wspierają procesy decyzyjne, 

umożliwiają planowanie produkcji, kontrolę stanów magazynowych, zarządzanie zamówieniami oraz 

nadzór nad budżetami (Gunia, 2019; Sai Avvaru i in., 2020). Ich wdrożenie znacząco poprawia 

transparentność działań operacyjnych i strategicznych, minimalizuje redundancję danych i redukuje 

ryzyko błędów wynikających z ręcznej obsługi (Sai Avvaru i in., 2020). 
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 W celu usystematyzowania ról poszczególnych systemów w Tabeli 2.1 zestawiono 

charakterystyczne cechy SCADA, MES i ERP. Zestawienie obejmuje m.in. poziom działania, zakres 

funkcji, źródła danych, czas reakcji, typowych użytkowników oraz przykładowe technologie. 

Tabela 2.1. Porównanie systemów SCADA, MES i ERP. 

Kryterium SCADA MES ERP 

Poziom działania Operacyjny  
Operacyjno-taktyczny (hala, 

wydział) 

Strategiczny 

(przedsiębiorstwo) 

Główne funkcje 

Monitoring, 

wizualizacja, 

alarmowanie, 

akwizycja danych, 

sterowanie nadrzędne 

Kontrola realizacji zleceń, 

śledzenie partii i genealogii, 

kontrola jakości, 

raportowanie efektywności 

(np. OEE) 

Planowanie zasobów i 

produkcji, finanse, 

zakupy, sprzedaż, 

magazyny, łańcuch 

dostaw 

Źródła danych 
Czujniki, PLC, RTU, 

DCS 

SCADA, maszyny, HMI, 

wpisy operatorów 

MES, bazy transakcyjne, 

dokumenty biznesowe 

Czas reakcji 
Rzeczywisty 

(sekundy) 
Krótki (godziny–dni) 

Średni i długi (dni–

miesiące) 

Zasięg 
Maszyna, gniazdo, 

linia 
Hala lub zakład 

Całe przedsiębiorstwo 

(także grupa) 

Użytkownicy 
Operatorzy, technicy 

utrzymania ruchu 

Kierownicy zmian, 

inżynierowie procesu i 

jakości, planiści operacyjni 

Kadra kierownicza, 

controlling, logistyka, 

finanse 

Integracja z 

innymi 

systemami 

PLC, HMI, DCS, IIoT, 

OPC UA 

SCADA, ERP, CMMS, 

LIMS, WMS 

MES, CRM, BI, SCM, 

systemy 

finansowo-księgowe 

Przykładowe 

technologie 

AVEVA System 

Platform, Siemens 

WinCC, Ignition 

Siemens Opcenter, Dassault 

Apriso, GE Proficy 

SAP S/4HANA, Oracle 

NetSuite, Microsoft 

Dynamics 365 

Opracowanie własne na podstawie: Awotidebe, 2025; Esther, 2024; Milewska, 2020; Wei i in., 2020. 

 

 Współczesne systemy nadzorowania procesów przemysłowych wykorzystują szereg nowoczesnych 

technologii, które wspierają ich skuteczność, elastyczność i bezpieczeństwo. Jednym z podstawowych 

rozwiązań jest Internet Rzeczy (IoT). Dzięki niemu możliwe jest monitorowanie parametrów pracy 

maszyn a następnie szybkie wykrywanie odchyleń od normy. W praktyce pozwala to zapobiegać 

awariom i minimalizować przestoje w produkcji (Popa i in., 2019; Ayvaz i in., 2021). Kolejnym filarem 

jest Big Data wraz z analityką danych, które umożliwiają przetwarzanie bardzo dużych zbiorów 

informacji pochodzących z maszyn i linii produkcyjnych. Zaawansowane platformy analityczne potrafią 

wykrywać ukryte zależności i wzorce, na przykład między ustawieniami procesów a jakością wyrobów, 

co daje podstawę do optymalizacji zarówno produkcji, jak i działań serwisowych (Lidong i in., 2016; 

Kumar i in., 2024). Coraz większe znaczenie w przemyśle ma także koncepcja cyfrowego bliźniaka, 

czyli wirtualnej kopii rzeczywistych maszyn i procesów. Pozwala ona na ich symulację w warunkach 

cyfrowych, testowanie różnych scenariuszy oraz optymalizację pracy urządzeń bez ryzyka dla 

faktycznego ciągu technologicznego. Dzięki temu przedsiębiorstwa mogą szybciej reagować na zmiany 

i wprowadzać usprawnienia, ograniczając jednocześnie koszty (Kukushkin i in., 2022; Wang i in., 2024). 
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Niezbędnym elementem nowoczesnych systemów jest chmura obliczeniowa, która zapewnia 

skalowalne i bezpieczne środowisko do przechowywania oraz analizy danych. Z jej pomocą można  

w elastyczny sposób zwiększać moc obliczeniową w zależności od potrzeb, a dostęp do informacji  

i narzędzi analitycznych możliwy jest z dowolnej lokalizacji. To szczególnie istotne w przypadku 

rozproszonych zakładów produkcyjnych, które generują ogromne ilości danych wymagających 

centralnego nadzoru (Colombo, 2014; Komeil, 2021). 

 Należy podkreślić również rolę sztucznej inteligencji, która staje się narzędziem umożliwiającym 

nie tylko automatyzację i analizę danych, ale także predykcyjne podejmowanie decyzji oraz 

optymalizację procesów. Analizując dane historyczne i bieżące, algorytmy są w stanie rozpoznawać 

wzorce poprzedzające awarie, prognozować zużycie elementów oraz podejmować decyzje wspierające 

optymalizację procesów. Zastosowanie metod AI pozwala więc przejść od podejścia reaktywnego do 

proaktywnego w nadzorowaniu procesów, co znacząco poprawia niezawodność i efektywność całego 

systemu produkcyjnego (Hector i in., 2024; Ucar, Karakose i in., 2024). Szczególne znaczenie dla 

rozwoju inteligentnych systemów nadzorowania ma implementacja metod uczenia maszynowego  

i głębokiego uczenia w obszarze kontroli jakości. Badania Ramesha i in. (2025) pokazują, że 

zastosowanie modelu YOLOv5 w połączeniu z przetwarzaniem obrazu oraz modułami sterowania 

sprzętowego umożliwia niemal całkowitą automatyzację procesu inspekcji. Uzyskane przez autorów 

wyniki wskazują, że zastosowane rozwiązanie znacząco przewyższa skuteczność tradycyjnych metod 

wizualnych i podkreśla, że funkcją systemów nadzorczych staje się nie tylko rejestrowanie parametrów 

i generowanie alarmów, lecz także autonomiczne wykrywanie wad, predykcja zagrożeń oraz 

podejmowanie działań korygujących w czasie rzeczywistym. Jest to krok w stronę koncepcji pełnej 

automatyzacji jakości oraz adaptacyjnego sterowania w ramach inteligentnej fabryki (Ramesh i in., 

2025). 

 Uczenie maszynowe wspiera również przetwarzanie danych w czasie rzeczywistym i detekcję 

anomalii. Rozwiązania te stosowane są zarówno w środowiskach przemysłowych, jak i w systemach 

opartych na Internecie Rzeczy. Integracja algorytmów z sieciami czujników IoT umożliwia stały nadzór 

nad parametrami środowiskowymi oraz stanem urządzeń, a także wczesne rozpoznawanie odchyleń od 

normy i uruchamianie działań predykcyjnych ograniczających ryzyko awarii (Rane i in., 2024). 

W obszarze bezpieczeństwa algorytmy ML analizują np. obraz z kamer w trybie ciągłym, automatycznie 

rozróżniając aktywności normalne i nietypowe oraz sygnalizując zagrożenia w czasie rzeczywistym 

Kolejną ważną rolą sztucznej inteligencji w systemach nadzorowania jest predykcja i wspomaganie 

procesu decyzyjnego. Modele uczone na danych historycznych i bieżących pozwalają prognozować 

stany krytyczne, a następnie dobierać optymalne strategie sterowania. W obszarze zarządzania energią 

umożliwiają one analizę profili zużycia i wdrażanie mechanizmów redukcji kosztów poprzez lepsze 

planowanie oraz optymalizację obciążeń (Rezaei i in., 2025). W medycynie systemy oparte na AI 

monitorują parametry zdrowotne użytkowników, przewidują potencjalne zagrożenia i generują wczesne 

ostrzeżenia (Ramezani i in., 2025). Istotnym polem zastosowań pozostaje także automatyzacja  
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i poprawa efektywności procesów produkcyjnych. Algorytmy ML wspierają wykrywanie defektów, 

rozumianych jako odchylenia przekraczające dopuszczalne granice tolerancji i prowadzące do 

powstania wyrobów niezgodnych. Należy podkreślić, że nie każde odchylenie parametrów procesowych 

stanowi defekt, część z nich mieści się w naturalnej zmienności procesu. Systemy oparte na sztucznej 

inteligencji pozwalają jednak identyfikować te nieprawidłowości, które mają znaczenie jakościowe,  

a tym samym wymagają interwencji. Dzięki temu możliwa jest optymalizacja cyklu wytwarzania oraz 

adaptacyjne sterowanie parametrami procesowymi, co skraca przestoje i podnosi jakość wyrobów.  

Z kolei w sporcie umożliwiają bieżącą analizę przebiegu gry i wspierają podejmowanie decyzji 

taktycznych w czasie rzeczywistym (Shafi i in., 2023).  

 Zakres zastosowań metod sztucznej inteligencji jest zatem bardzo szeroki i obejmuje zarówno 

przemysł, jak i medycynę czy analizę danych. W Tabeli 2.2 zestawiono przegląd metod i technologii AI 

wraz z przykładami ich praktycznego wykorzystania w systemach inteligentnego nadzorowania.  

Tabela 2.2. Przegląd metod i technologii AI wykorzystywanych w systemach nadzorowania. 

Kategoria Technologie / metody / narzędzia 
Przykładowe 

zastosowania 

1. Metody uczenia 

maszynowego 

Regresja logistyczna, SVM, drzewa 

decyzyjne, Random Forest, XGBoost, k-

means 

Klasyfikacja stanów 

maszyn, prognozowanie 

awarii, adaptacyjne 

sterowanie procesami 

2. Architektury sieci 

neuronowych 

CNN, RNN, LSTM/GRU, autoenkodery, 

GAN, transformery (Vision 

Transformers, BERT) 

Wizyjna kontrola jakości, 

analiza szeregów 

czasowych, detekcja 

anomalii, generowanie 

danych 

3. Algorytmy i systemy 

hybrydowe 

Logika rozmyta, systemy ekspertowe, 

modele hybrydowe (np. ARIMA + NN) 

Obsługa niepewności, 

wspomaganie decyzji, 

predykcja procesów 

4. Technologie wspierające 

AI 

Computer Vision, Machine Vision 

Systems, NLP, Predictive Analytics, 

Anomaly Detection 

Analiza obrazów i 

sygnałów, analiza raportów 

i logów, prognozowanie 

trendów 

5. Infrastruktura i integracja 

Big Data Analytics, IoT/IIoT + Edge AI, 

chmura obliczeniowa, Digital Twins, 

Blockchain + AI, SCADA/MES/MOM z 

modułami AI 

Przetwarzanie danych w 

czasie rzeczywistym, 

symulacja procesów, 

bezpieczeństwo danych 

6. Inteligentne technologie 

pomocnicze 

Hiperspektralne systemy wizyjne, 

analiza sygnałów akustycznych i 

drganiowych, Predictive Maintenance 

(PdM), HMI z AI, robotyka 

współpracująca 

Diagnostyka predykcyjna, 

inspekcja jakości, wsparcie 

operatora, automatyzacja 

procesów pomocniczych 

Opracowanie własne na podstawie: Negnevitsky, 2005; Kumar i in., 2021; Rane i in., 2024; Rahman i in., 2025. 



  

25 

 

2.1.4. Architektura inteligentnego systemu nadzorowania 

 Architektura inteligentnego systemu nadzorowania określa sposób organizacji i współdziałania jego 

elementów. Ukazuje hierarchię warstw oraz przepływy informacji, które zapewniają spójność działania 

całego systemu. W literaturze i praktyce przemysłowej najczęściej przyjmuje się ujęcie warstwowe, 

pozwalające powiązać poziom urządzeń technicznych z systemami zarządzania produkcją  

i przedsiębiorstwem (Gao i in., 2025). W warunkach Przemysłu 4.0 model ten został rozszerzony o nowe 

elementy, takie jak komunikacja w czasie rzeczywistym, przetwarzanie rozproszone, cyfrowe bliźniaki 

oraz moduły sztucznej inteligencji. Dzięki temu możliwe jest nie tylko monitorowanie i kontrola 

procesów, lecz także ich predykcja, optymalizacja i integracja z decyzjami biznesowymi (Kim i in., 

2023). W efekcie współczesny inteligentny system nadzorowania można przedstawić jako warstwy 

funkcjonalne (Rysunek 2.3). 

Rysunek 2.3. Warstwy architektury inteligentnego systemu nadzorowania (opracowanie własne na podstawie: 

Kim i in., 2023; Gao i in., 2025). 

1. Warstwa percepcji (czujniki, maszyny, IoT, PLC). Obejmuje urządzenia odpowiedzialne za 

rejestrację parametrów procesu, w tym czujniki środowiskowe i procesowe, systemy wizyjne oraz 

sterowniki PLC, które stanowią interfejs pomiędzy maszynami a cyfrowym systemem nadzoru 

(Shrivastava i in., 2025). W środowisku przemysłowym coraz częściej stosuje się rozwiązania 

Industrial IoT (IIoT), umożliwiające sieciową integrację tych elementów i zapewniające ciągłe, 

wiarygodne pozyskiwanie danych w czasie rzeczywistym (Vaclavova i in., 2022). 

2. Warstwa komunikacji odpowiada za transmisję danych między urządzeniami a systemami 

wyższych poziomów. Obejmuje zarówno media transmisyjne, jak przewodowe sieci przemysłowe 
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(np. Ethernet przemysłowy, PROFINET) oraz rozwiązania bezprzewodowe (np. Wi-Fi, sieci 

czujnikowe, 5G), jak i protokoły komunikacyjne, które zapewniają interoperacyjność i spójność 

wymiany danych. Do najczęściej stosowanych należą m.in. OPC UA, umożliwiający bezpieczną  

i ustandaryzowaną komunikację (Paul, 2024), czy MQTT, szeroko wykorzystywany  

w rozwiązaniach IIoT do przesyłania informacji w czasie rzeczywistym (Ruchi, 2023). 

Zastosowanie nowoczesnych mediów, takich jak sieci 5G, pozwala dodatkowo na uzyskanie dużej 

przepustowości i niskich opóźnień, co wspiera nadzór w czasie rzeczywistym, np. w sterowaniu 

robotami czy pojazdami AGV (Oyekanlu i in., 2020). Warstwa ta zapewnia szybkie i niezawodne 

połączenia w całym systemie, od czujników po aplikacje biznesowe. 

3. Warstwa przetwarzania danych (Edge, Cloud, Big Data). Skupia się na gromadzeniu, wstępnym 

przetwarzaniu i składowaniu danych z procesu. Współcześnie przyjmuje formę hybrydową, łącząc 

Edge Computing tj. przetwarzanie blisko źródła danych, z minimalnymi opóźnieniami (Qi i in., 

2019) oraz chmurę obliczeniową, oferującą dużą moc obliczeniową i przestrzeń do analiz Big Data 

i trenowania modeli AI. Zalecane są architektury rozproszone, w których dane krytyczne 

przetwarzane są lokalnie, a szerokie analizy prowadzone w chmurze (Cao i in., 2020). Przykładowo, 

alarmy jakości mogą być wykrywane przez algorytmy edge przy linii produkcyjnej, podczas gdy 

analiza trendów i predykcja odbywają się w chmurze. Warstwa ta stanowi kręgosłup informacyjny 

systemu, zapewniając integralność i dostępność danych oraz przygotowując je do dalszej analizy  

w warstwie inteligencji. 

4. Warstwa aplikacyjna (MES, ERP, HMI, SCADA). Czwarta warstwa obejmuje systemy 

wspierające zarządzanie produkcją, nadzór operatorski i planowanie biznesowe. Należą do niej 

SCADA/HMI, MES i ERP, które tworzą zintegrowane środowisko zarządzania. SCADA odpowiada 

za bieżący nadzór nad procesem, zbieranie danych z czujników i sterowników oraz prezentację ich 

operatorom. Architektura SCADA obejmuje RTU/PLC, sieci komunikacyjne i stacje nadzorcze, 

umożliwiając obserwację linii produkcyjnej w czasie rzeczywistym i reakcję na alarmy (Mendes, 

2020). MES działa na poziomie zakładu, koordynuje harmonogramy, śledzi zlecenia i integruje dane 

z maszyn oraz SCADA, zapewniając kontrolę nad produkcją i natychmiastową reakcję na 

odchylenia. Stanowi pomost między biznesowymi planami ERP a operacjami hali produkcyjnej 

(Esther, 2024). ERP zarządza zasobami całego przedsiębiorstwa, obejmując planowanie produkcji, 

logistykę i finanse. Integracja MES–ERP pozwala automatycznie korygować plany w oparciu  

o rzeczywiste postępy i stany magazynowe. Warstwa ta obejmuje również interfejsy HMI i pulpity 

menedżerskie, zapewniając wgląd w proces i jego kontrolę. Jej znaczenie rośnie wraz  

z rozszerzaniem SCADA i MES o funkcje analityczne oraz integrację z AI. 

5. Warstwa decyzyjna (adaptacja, optymalizacja, planowanie). Najwyższa warstwa odpowiada za 

podejmowanie decyzji sterujących i planistycznych na podstawie danych z niższych poziomów. 

Stanowi zwieńczenie architektury, gdzie zintegrowane analizy przekładają się na działania 

korygujące i usprawniające proces. Może być realizowana przez człowieka lub automatyczne 
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mechanizmy oparte na algorytmach. W inteligentnych systemach nadzoru przyjmuje postać 

modułów optymalizacji i adaptacji, które dynamicznie regulują parametry maszyn czy 

harmonogramy produkcji (Zhang i in., 2025). Zastosowanie metod ewolucyjnych czy optymalizacji 

wielokryterialnej pozwala ograniczać straty i przestoje, a uczenie ze wzmocnieniem wspiera 

optymalizację sekwencji operacji. Warstwa obejmuje także planowanie strategiczne np. aktualizację 

planów w razie przewidywanych awarii czy reorganizację zleceń pod wpływem nowych 

priorytetów. Jej kluczową cechą jest sprzężenie zwrotne: decyzje są przekazywane do warstwy 

percepcji, co umożliwia zamknięty cykl monitorowania i korekt. Coraz częściej wdrażana jest  

w formie systemów ekspertowych nadzorujących działanie modeli ML i tłumaczących ich wyniki 

na działania zgodne z normami (Yang, 2024). Dojrzały system tej klasy automatycznie przekształca 

dane w decyzje i działania, zwiększając efektywność operacyjną i ograniczając przestoje (Sundaram 

i in., 2023). Choć nadzór człowieka pozostaje istotny, kierunek rozwoju zmierza ku rosnącej 

autonomii decyzyjnej opartej na AI. 

 Przedstawione na rysunku pięć poziomów przenika warstwa sztucznej inteligencji, która działa 

przekrojowo. Wspiera wszystkie poziomy architektury, dostosowując metody AI/ML do skali 

problemu i horyzontu czasowego. Na najniższych warstwach (percepcja, komunikacja) działa blisko 

sprzętu, w środkowych warstwach (przetwarzanie, aplikacje) zapewnia analizy predykcyjne  

i preskrypcyjne, a w warstwie decyzyjnej wspiera strategiczne wybory menedżerskie. Dzięki temu 

tworzy się spójny system. Warstwa ta, choć nieujęta w pierwotnym standardzie ISA-95, współpracuje  

z systemami SCADA/MES przez interfejsy API i protokoły OPC UA/MQTT. Dzięki temu modele 

predykcyjne przekazują wyniki analiz do systemów sterowania, co rozszerza funkcje SCADA o moduły 

AI i Big Data. Warstwa inteligencji pełni rolę „mózgu” systemu, wspierając wyższe poziomy 

architektury w podejmowaniu decyzji (Aksel de Vries, 2021). Takie podejście pozwala tworzyć systemy 

elastyczne, skalowalne i zdolne do adaptacji w zmiennym otoczeniu produkcyjnym. Skoro jednak 

architektura wyznacza ramy działania systemu, równie istotne staje się pytanie o jego skuteczność, które 

pozwalają ocenić stopień realizacji przyjętych celów i mierzyć wartość dodaną wynikającą z wdrożenia 

tego typu rozwiązań. 

2.1.5. Metody oceny i wskaźniki efektywności inteligentnego nadzorowania procesów 

 Współczesne systemy nadzorowania procesów produkcyjnych, szczególnie w zautomatyzowanych 

środowiskach przemysłowych, podlegają ciągłemu doskonaleniu ze względu na rosnące wymagania 

jakościowe, skracanie cykli produkcyjnych oraz potrzebę redukcji kosztów (Kliment i in., 2020; 

Majstorovic i in., 2020). Jednocześnie badania pokazują, że wdrożenie zintegrowanych systemów 

nadzorowania może istotnie poprawić stabilność procesów, zmniejszyć liczbę reklamacji oraz 

zwiększyć efektywność operacyjną zakładów. Efektywność nadzorowanych procesów produkcyjnych 

nie zależy jednak wyłącznie od parametrów technicznych maszyn czy czasu operacyjnego, ale wynika 
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z synergii wielu czynników, obejmujących aspekty technologiczne, organizacyjne, informacyjne oraz 

środowiskowe (Berić i in. 2018; Popescu i in., 2022). W ujęciu ogólnym efektywność oznacza relację 

między osiągniętymi wynikami a nakładami poniesionymi na ich uzyskanie. Może być interpretowana 

zarówno jako efektywność techniczna (związana z wykorzystaniem zasobów), jak i efektywność 

ekonomiczna (relacja między wartością produkcji a kosztami jej wytworzenia) (Meredyk, 2003; Pyszka, 

2015; Sajin i in., 2025). W literaturze efektywność procesu często przedstawiana jest za pomocą 

ogólnego wzoru: 

 

Efektywność =
Efekt

Nakład
 

 

gdzie: 

• Efekt to uzyskane wartościowe rezultaty (np. liczba zapakowanych jednostek, wartość 

produkcji, poziom jakości), 

• Nakład to zużyte zasoby (czas pracy, energia, materiały, koszty) 

 Efektywność procesu wyrobów zależy od wielu powiązanych ze sobą czynników, które można 

pogrupować w cztery główne obszary: technologiczne, organizacyjne, informacyjne i środowiskowe. 

Precyzyjna identyfikacja tych czynników stanowi punkt wyjścia do analizy procesów oraz ich dalszej 

optymalizacji, zarówno w ujęciu operacyjnym, jak i strategicznym (Sani i in., 2013; Kliment i in., 2020). 

• Czynniki technologiczne odnoszą się do infrastruktury technicznej i poziomu automatyzacji 

systemów produkcyjnych. Obejmują m.in. rodzaj i konfigurację maszyn, zastosowane technologie 

przetwarzania i kontroli, a także stopień integracji z systemami sterowania. Istotne znaczenie ma 

niezawodność urządzeń, jakość używanych materiałów oraz zdolność adaptacji technologii do 

zmiennych warunków eksploatacyjnych (Rohée i in., 2009; Sani i in., 2013). 

• Czynniki organizacyjne obejmują strukturę zarządzania produkcją, planowanie i alokację 

zasobów, rotację i kwalifikacje personelu oraz organizację pracy zmianowej. Kluczową rolę 

odgrywa poziom kompetencji operatorów i inżynierów, a także stopień wdrożenia metod 

doskonalenia, takich jak Lean Manufacturing, Total Productive Maintenance (TPM) czy Six Sigma 

(Huaman-Monzon i in., 2024; Narayan, 2024). 

• Czynniki informacyjne odnoszą się do dostępności i jakości danych w czasie rzeczywistym, 

stopnia integracji systemów IT oraz zdolności do analizy wskaźników procesowych. Spójne  

i wiarygodne dane umożliwiają podejmowanie trafnych decyzji operacyjnych, usprawniają 

harmonogramowanie zleceń i wspierają predykcyjne utrzymanie ruchu (Wei i in., 2020; Ji i in., 

2025). 

• Czynniki środowiskowe obejmują warunki pracy systemów, takie jak temperatura, wilgotność, 

zapylenie, hałas czy wymagania sanitarne. W branżach o wysokim reżimie higienicznym kluczowe 
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znaczenie ma utrzymanie odpowiedniego mikroklimatu, co bezpośrednio wpływa na trwałość  

i jakość produktów oraz zgodność z wymaganiami norm (np. HACCP, ISO 22000) (Mendis i in., 

2009; Gil L, 2017; Ruben i in., 2019). 

 Identyfikacja czynników technologicznych, organizacyjnych, informacyjnych i środowiskowych 

stanowi punkt wyjścia do oceny skuteczności inteligentnych systemów nadzorowania. Aby ich wpływ 

można było obiektywnie monitorować i analizować, konieczne jest zastosowanie mierzalnych 

wskaźników efektywności (KPI - Key Performance Indicators), które przekładają złożone 

uwarunkowania procesu na wartości liczbowe możliwe do bieżącej obserwacji i porównania. Wskaźniki 

te pozwalają na ilościową ocenę stabilności, jakości i niezawodności procesu, a tym samym wspierają 

podejmowanie uzasadnionych decyzji zarządczych. Przykładowo, OEE (Overall Equipment 

Effectiveness) dostarcza zintegrowanej informacji o wykorzystaniu maszyn. Spadek OEE może 

sygnalizować problemy z dostępnością (awarie), wydajnością (spowolnienia) lub jakością (wzrost 

braków) (Leśniewski i in., 2023; Sifiso Phenyane, 2023). FPY (First Pass Yield) czy DPMO (Defects 

Per Million Opportunities) natychmiast pokazują jakość procesu, gdzie niska wydajność pierwszego 

przejścia lub rosnąca liczba defektów na milion wskazują na potrzebę interwencji (usprawnienia 

procesu, kalibracji maszyn, szkoleń itp.) (Nugraha i in., 2024). MTBF (Mean Time Between Failures) / 

MTTR (Mean Time To Repair) z kolei informują o stanie utrzymania ruchu; pogarszające się wartości 

(np. spadek MTBF, wydłużenie MTTR) ostrzegają przed rosnącą awaryjnością bądź niewystarczającą 

skutecznością służb technicznych (Sajin i in., 2025). Scrap rate i COPQ (Cost of Poor Quality) 

przekładają się bezpośrednio na koszty a ich wzrost oznacza marnotrawstwo zasobów i wyższe koszty 

(Chiu i in., 2007). Wskaźniki reklamacji oraz OTD (On Time Delivery) to z kolei barometr satysfakcji 

klienta i sprawności organizacyjnej; zwiększona liczba reklamacji lub spadek terminowości dostaw 

świadczą o obniżeniu jakości odczuwanej i mogą skutkować utratą zaufania klientów (Kamali, 2018). 

Dzięki takiemu zestawowi KPI system nadzorowania może wcześnie wykrywać odchylenia od wartości 

docelowych i inicjować działania korygujące zanim drobne problemy urosną do poważnych awarii czy 

strat (Kang i in., 2016). Innymi słowy, wskaźniki efektywności pełnią rolę sprzężenia zwrotnego, 

dostarczają informacji o funkcjonowaniu procesu, pozwalając mierzyć postępy doskonalenia, 

porównywać wydajność w czasie oraz między liniami/zakładami, a ostatecznie ocenić skuteczność 

samego systemu nadzorowania (czy przynosi on poprawę tychże wskaźników) (Fantozzi i in., 2023). 

 Na potrzeby usystematyzowania mierników przedstawionych w literaturze, na Rysunku 2.4 

zaprezentowano klasyfikację wskaźników efektywności (KPI) stosowanych w inteligentnym 

nadzorowaniu procesów. Wskaźniki te zostały pogrupowane w trzy kategorie: produkcyjne, jakościowe 

oraz związane z utrzymaniem ruchu, obejmujące aspekty techniczne, ekonomiczne i organizacyjne. 
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Rysunek 2.4. Klasyfikacja wskaźników efektywności (KPI) w inteligentnym nadzorowaniu procesów 

(opracowanie własne na podstawie: Kang i in., 2016; Luozzo i in., 2023; Czerwińska i in.,2025). 

 W kontekście Przemysłu 4.0 monitorowanie wskaźników efektywności jest zintegrowane  

z zaawansowanymi systemami cyfrowymi: SCADA, MES, ERP oraz narzędziami AI. SCADA i MES 

automatycznie zbierają dane z czujników i sterowników, umożliwiając obliczanie KPI w czasie 

rzeczywistym i ich wizualizację na panelach operatorskich oraz w raportach dla kadry zarządzającej 

(Omisola i in., 2023). MES integruje dane z wielu stanowisk, wspierając analizę całych linii 

produkcyjnych, identyfikację wąskich gardeł i korektę harmonogramów. Połączenie systemów IT  

z warstwą produkcyjną eliminuje opóźnienia i błędy wynikające z ręcznego raportowania. Sztuczna 

inteligencja dodatkowo rozszerza te możliwości, gdzie modele uczenia maszynowego analizują dane w 

celu prognozowania awarii (wydłużając MTBF, skracając MTTR) oraz wczesnego wykrywania 

odchyleń jakości (poprawiając FPY i DPMO) (Chowdhury i in., 2023). Systemy AI mogą również 

dynamicznie optymalizować harmonogramy i zasoby. Tym samym KPI stają się narzędziem 

wspierającym decyzje w czasie rzeczywistym i umożliwiającym ciągłe doskonalenie procesów poprzez 

redukcję strat, zwiększenie produktywności i poprawę jakości. Wdrożenie monitoringu KPI, zwłaszcza 

OEE, uznaje się za pierwszy krok w cyfryzacji fabryk i budowie inteligentnych systemów nadzorowania 

(Gomaa, 2025). Tabela 2.3 przedstawia zestawienie wybranych wskaźników efektywności 

wykorzystywanych do oceny procesów produkcyjnych w środowisku zautomatyzowanym.  
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Tabela 2.3. Kluczowe wskaźniki efektywności (KPI) w inteligentnym nadzorowaniu procesów. 

Wskaźnik Definicja Wzór Jednostka Interpretacja 

OEE (Overall 

Equipment 

Effectiveness) 

Całkowita 

efektywność 

wyposażenia jako 

iloczyn 

dostępności, 

wydajności i 

jakości 

Dostępność * 

Wydajność * Jakość 
% 

Wskaźnik określający 

relację rzeczywistej 

produkcji dobrych 

wyrobów do produkcji 

teoretycznie możliwej w 

warunkach pełnej 

dostępności, nominalnej 

prędkości i braku 

defektów 

A – 

Availability 

(dostępność) 

Udział czasu 

operacyjnego w 

czasie 

planowanym 

Czas rzeczywistego 

działania maszyny / 

Planowany czas pracy * 

100% 

% 

Miara strat z tytułu 

przestojów planowanych 

i nieplanowanych 

P – 

Performance 

(wydajność) 

Relacja 

rzeczywistego 

tempa pracy do 

tempa 

nominalnego 

Liczba 

wyprodukowanych 

sztuk / (Czas operacyjny 

maszyny * Nominalna 

wydajność) * 100% 

% 

Miara spowolnień i 

mikroprzestojów 

względem prędkości 

odniesienia 

Q – Quality 

(jakość) 

Udział wyrobów 

dobrych w całej 

produkcji 

Liczba produktów 

dobrych / Całkowita 

liczba 

wyprodukowanych 

produktów (PQ) * 100% 

% 

Miara braków 

wewnętrznych i 

poprawek 

FPY (First 

Pass Yield) 

Wydajność 

pierwszego 

przejścia bez 

poprawek 

Liczba dobrych 

jednostek / Całkowita 

liczba 

wyprodukowanych 

jednostek) * 100% 

% 

Stabilność i 

powtarzalność procesu 

w jednym przebiegu 

DPMO 

(Defects Per 

Million 

Opportunities) 

Liczba defektów 

na milion szans 

wystąpienia wady 

Całkowita liczba 

defektów / (Całkowita 

liczba jednostek * 

Liczba możliwości 

defektu na jednostkę) * 

1 000 000 

liczba na 

10⁶ 

Miara jakości w 

metodologii Six Sigma 

Scrap rate 

(wskaźnik 

braków) 

Udział wyrobów 

brakowych w 

całej produkcji 

Liczba wyrzuconych 

sztuk / Całkowita 

produkcja) * 100%  

% 
Miara marnotrawstwa 

materiałowego i czasu 

MTBF (Mean 

Time Between 

Failures) 

Średni czas pracy 

między awariami 

Całkowity czas pracy / 

Liczba awarii 
godzina 

Im wyższy MTBF, tym 

większa niezawodność 

maszyn 

MTTR (Mean 

Time to 

Repair) 

Średni czas 

usunięcia awarii 

Całkowity czas napraw 

w danym okresie / 

Liczba napraw w tym 

samym okresie  

godzina 

Im niższy MTTR, tym 

szybsza reakcja 

utrzymania ruchu 

Koszt 

jednostkowy 

Średni koszt 

wytworzenia 

jednej sztuki 

Całkowite koszty 

produkcji / Liczba 

wyprodukowanych 

jednostek 

waluta/szt. 
Miara efektywności 

ekonomicznej procesu 
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OTD (On 

Time 

Delivery) 

Terminowość 

realizacji zleceń 

Liczba dostaw 

zrealizowanych na czas 

/ Całkowita liczba 

dostarczonych 

zamówień) * 100% 

% 

Zdolność 

dotrzymywania 

terminów produkcji i 

dostaw 

CCR 

(Customer 

Complaint 

Rate) 

Odsetek 

sprzedanych 

wyrobów 

objętych 

reklamacją 

Całkowita liczba skarg / 

Całkowita liczba 

transakcji lub klientów) 

* 100% 

% 
Jakość postrzegana 

przez klienta 

RCR (Repeat 

Complaint 

Rate) 

Odsetek klientów 

zgłaszających 

reklamację 

powtórnie 

Liczba powtórnych 

zgłoszeń w danym 

okresie / Całkowita 

liczba zgłoszeń w 

danym okresie) * 100% 

% 

Miara skuteczności 

działań korygujących i 

stabilności jakości 

Opracowanie własne na podstawie: Kang i in., 2016; Gopang, 2024; Czerwińska i in., 2025. 

 W środowisku Industry 4.0 wskaźniki te nie są analizowane oddzielnie, lecz wykorzystywane 

łącznie w systemach zarządzania. Przykładowo OEE oraz MTBF/MTTR stanowią podstawę programów 

TPM (Total Productive Maintenance), ukierunkowanych na eliminację sześciu wielkich strat  

i zwiększanie dyspozycyjności maszyn (Mouhib i in., 2025). Z kolei DPMO, FPY i poziom braków to 

istotne miary w projektach Six Sigma, ukierunkowanych na redukcję zmienności i defektów (Nowicki, 

2016). Natomiast zasady Lean kładą nacisk na ograniczenie marnotrawstwa (np. nadprodukcji, braków, 

przestojów) w celu poprawy wskaźników wydajności i kosztów (Harshitkumar, 2021). Tym samym 

inteligentne nadzorowanie procesów produkcyjnych wykorzystuje sprawdzone metodologie poprawy 

efektywności, integrując monitorowanie KPI z narzędziami analitycznymi. Efektem jest ciągłe 

doskonalenie, gdzie system nadzorujący nie tylko raportuje bieżące wartości wskaźników, ale też 

wspiera diagnozę przyczyn odchyleń i rekomenduje działania korygujące, aby docelowo podnosić 

efektywność procesu we wszystkich wymiarach (technicznej, jakościowej, ekonomicznej  

i organizacyjnej). 

2.2. Konfekcjonowanie 

2.2.1. Znaczenie i charakterystyka procesu konfekcjonowania 

 Konfekcjonowanie stanowi zespół operacji przygotowujących produkt do dalszych etapów  

w łańcuchu dystrybucji. Obejmuje m.in. porcjowanie, pakowanie, etykietowanie, foliowanie, 

umieszczaniu dodatkowych materiałów promocyjnych (np. ulotek lub materiałów informacyjnych), 

formowanie zestawów promocyjnych czy przepakowywanie wyrobów. Celem tych działań jest nie tylko 

zabezpieczenie produktu, lecz także dostosowanie jego formy do wymagań logistycznych, 

jakościowych i identyfikacyjnych (Kirwan i in., 2003; Gordon L. Robertson, 2012). Proces ten może 

być realizowany zarówno manualnie, jak i przy użyciu zautomatyzowanych linii pakujących, w tym 

zintegrowanych systemów formowania, napełniania i zamykania (form-fill-seal), które pozwalają na 

wykonanie kilku operacji w jednym ciągu technologicznym (Seifi i in., 2023). Konfekcjonowanie pełni 
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rolę kluczowego ogniwa pomiędzy wytworzeniem produktu a jego dostarczeniem na rynek. Wpływa 

bezpośrednio na zachowanie parametrów jakościowych (świeżość, trwałość, wygląd) oraz 

bezpieczeństwo wyrobów w trakcie magazynowania i transportu (Fung i in., 2018). W branży 

spożywczej właściwe opakowanie chroni żywność przed zanieczyszczeniami i zepsuciem, a etykieta 

dostarcza konsumentom niezbędnych informacji o składzie, alergenach i dacie przydatności do 

spożycia. Z kolei w sektorach takich jak farmacja czy kosmetyki wymagana jest wyjątkowa precyzja, 

ponieważ nawet drobne niezgodności (np. w dawkowaniu lub oznakowaniu) mogą skutkować 

poważnymi konsekwencjami zdrowotnymi i prawnymi (Sani i in., 2013). Struktura procesu 

konfekcjonowania może obejmować następujące etapy: 

• Porcjowanie często realizowane poprzez naważanie, polega na dokładnym odmierzaniu 

odpowiednich ilości produktu przed umieszczeniem go w opakowaniu jednostkowym. Jest to 

niezwykle istotny etap szczególnie w branżach takich jak spożywcza, farmaceutyczna czy 

kosmetyczna, gdzie precyzyjna dawka produktu ma kluczowe znaczenie dla jakości  

i bezpieczeństwa. Automatyczne systemy naważające (np. multihead weighers) umożliwiają 

szybkie i precyzyjne porcjowanie, minimalizując straty materiałowe i zwiększając wydajność 

produkcji (García-Jiménez, 2021). Nowoczesne rozwiązania w zakresie naważania wykorzystują 

technologie cyfrowe i systemy sterowania umożliwiające integrację z liniami pakującymi oraz 

systemami kontroli jakości. Takie podejście jest zgodne z koncepcją Przemysłu 4.0 i wspiera rozwój 

inteligentnych systemów produkcyjnych (McGuire i in., 2025). 

• Pakowanie to jeden z podstawowych etapów konfekcjonowania. Ma ono za zadanie zapewnić 

produktowi bezpieczeństwo w trakcie transportu i przechowywania, a także estetyczny wygląd, 

który może decydować o wyborze konsumenta. Szczególne znaczenie ma to w branży e-commerce, 

gdzie pierwsze wrażenie klienta często zależy od jakości i wyglądu opakowania. Karton, w którym 

znajduje się towar, musi być nie tylko atrakcyjny wizualnie, ale także spełniać wymogi przewoźnika 

i zabezpieczać produkt przed uszkodzeniem (Dobrucka, 2013; Han i in., 2018). 

• Etykietowanie to kolejny ważny etap procesu, zapewnia identyfikację produktu i przekazanie 

informacji niezbędnych do dalszej obróbki lub użytkowania. Etykiety mogą zawierać kody 

kreskowe, daty przydatności, oznaczenia partii produkcyjnej, a także treści marketingowe lub 

techniczne (Biji et al., 2015). 

 Obok tradycyjnych metod ręcznych i półautomatycznych, cechujących się elastycznością, ale 

ograniczoną wydajnością, coraz częściej stosuje się zintegrowane linie automatyczne typu form-fill-

seal, które w jednym ciągu technologicznym formują opakowanie, napełniają je odmierzoną porcją  

i szczelnie zamykają (Seifi i in., 2023). W skład takich linii wchodzą również urządzenia kontrolno-

pomiarowe, jak wagi wielogłowicowe oraz etykieciarki zapewniające powtarzalność i zgodność procesu 

z normami jakościowymi (Hambir i in., 2008). Rozwój technologiczny doprowadził także do pojawienia 
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się rozwiązań określanych mianem Packaging 4.0, obejmujących np. czujniki czasowo-temperaturowe 

czy etykiety RFID, które umożliwiają monitorowanie warunków otoczenia produktu w czasie 

rzeczywistym i sygnalizowanie nieprawidłowości (Zhu i in., 2023). Dzięki nim możliwe jest 

zapewnienie pełnej identyfikowalności partii oraz szybkie reagowanie na potencjalne zagrożenia 

jakościowe. Różnorodność stosowanych rozwiązań, od manualnych, przez półautomatyczne,  

po zintegrowane i inteligentne systemy obrazuje ewolucję podejścia do konfekcjonowania. W Tabeli 

2.4 przedstawiono zestawienie wybranych systemów wraz z ich charakterystyką i obszarami 

zastosowań. 

Tabela 2.4. Przegląd systemów konfekcjonowania – charakterystyka i zastosowanie. 

Systemy 

konfekcjonowania 
Charakterystyka Zastosowanie 

Systemy ręczne i 

półautomatyczne 

Niski poziom automatyzacji, wysoka elastyczność 

przy częstych zmianach asortymentu, relatywnie niskie 

nakłady inwestycyjne, ograniczona wydajność i 

powtarzalność. Wymagają stałej obecności operatora, 

umożliwiają szybkie uruchomienie i rekonfigurację 

stanowisk. 

Małe i średnie serie, 

produkcja 

rzemieślnicza, 

prototypowanie, 

środowiska o dużej 

zmienności SKU. 

Systemy 

modułowe i 

hybrydowe 

Budowa modułowa pozwala na skalowanie linii, 

szybkie przezbrojenia i rozbudowę funkcji. Łączą 

stacje automatyczne i manualne. Umożliwiają 

integrację z etykietowaniem, kontrolą wizyjną, 

wagami kontrolnymi i systemami śledzenia partii. 

Linie średniej skali, 

zakłady o 

zróżnicowanym 

portfelu produktów i 

częstych 

przezbrojeniach. 

Zintegrowane linie 

form fill seal 

(VFFS/HFFS, flow 

pack) 

Automatyzacja sekwencji formowanie, napełnianie i 

zgrzewanie w jednym cyklu. Wersje pionowe VFFS 

dla produktów sypkich i drobnych oraz poziome 

HFFS, w tym rozwiązania flow pack, dla produktów o 

stałej formie. Łatwa integracja z dozownikami, 

wagami, kontrolą szczelności i systemami wizyjnymi. 

Wysoka wydajność i jakość zamknięć. 

Przemysł spożywczy, 

chemiczny, 

kosmetyczny; 

produkcja 

wielkoseryjna, procesy 

o podwyższonych 

wymaganiach 

higienicznych. 

Kartoniarki i 

systemy 

kartonowania 

Formowanie, napełnianie i zamykanie opakowań 

kartonowych pojedynczych i zbiorczych. Układy top 

load, side load oraz wrap around. Możliwa integracja z 

urządzeniami pick and place, etykietowaniem oraz 

kontrolą masy i wizyjną. 

Farmacja, kosmetyka, 

FMCG; pakowanie 

jednostek w 

opakowania zbiorcze, 

przygotowanie do 

dystrybucji. 

Systemy z 

robotami 

przemysłowymi 

Zastosowanie robotów delta, SCARA lub 

sześciosiowych. Zadania pick and place, pakowanie do 

kartonów, paletyzacja i depaletyzacja. Wysoka 

precyzja i powtarzalność, szybka zmiana programu, 

możliwość współpracy z systemami wizyjnymi i 

czujnikami siły. Dostępne także rozwiązania 

cobotowe. 

Duże linie o wysokiej 

wydajności, logistyka i 

pakowanie końcowe, 

środowiska z dużą 

zmiennością 

wariantów produktu. 
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Systemy 

wykorzystujące 

sztuczną 

inteligencję 

Analiza strumieni danych w czasie rzeczywistym, 

detekcja anomalii i wizyjna kontrola jakości, 

predykcyjne utrzymanie ruchu oraz adaptacyjne 

sterowanie parametrami. Integracja z systemami 

SCADA, MES i ERP. Zdolność do poprawy 

wskaźników OEE i FPY przy zachowaniu ścieżek 

wyjaśniania decyzji. 

Zaawansowane linie 

pakujące, zakłady 

realizujące 

transformację 

Przemysłu 4.0, 

środowiska 

wymagające wysokiej 

stabilności jakości i 

ograniczenia 

przestojów. 
Opracowanie własne na podstawie: Kirwan i in., 2003; Habib, Rizvan i in., 2023; Farah-Alva i in., 2024; Henok i 

in., 2024; Pantoja-Benavides i in., 2024; Roslan i in., 2024; Sundar i in., 2024. 

 Proces konfekcjonowania, będący kluczowych etapem łańcucha produkcyjnego, różni się znacząco 

w zależności od branży, rodzaju produktu oraz wymagań jakościowych i logistycznych. Różnorodność 

środowisk przemysłowych wyklucza istnienie jednego uniwersalnego rozwiązania, każda branża 

kładzie nacisk na inne parametry, co determinuje wybór technologii, rodzaju opakowań i poziomu 

automatyzacji (Han i in., 2018). 

 W przemyśle spożywczym dominuje potrzeba zapewnienia bezpieczeństwa mikrobiologicznego  

i zachowania świeżości produktów. Stosuje się tutaj technologie takie jak pakowanie w atmosferze 

ochronnej (MAP), linie typu form-fill-seal, integrację z wagami wielogłowicowymi oraz systemy 

detekcji ciał obcych i etykietowania zgodnego z przepisami sanitarnymi. Kluczowe znaczenie ma 

również kontrola temperatury, wilgotności i czasu pakowania, a także możliwość śledzenia partii 

produktu (traceability) (Sani i in., 2013; Hallmann i in., 2018). W branży farmaceutycznej  

i kosmetycznej wymagana jest wyjątkowa precyzja oraz zgodność z normami GMP. W tym środowisku 

powszechnie stosuje się zautomatyzowane systemy dozujące, blisterowanie, etykietowanie z pełną 

identyfikowalnością oraz systemy walidacji danych produkcyjnych. Ze względu na konieczność 

spełnienia rygorystycznych przepisów dotyczących bezpieczeństwa, konfekcjonowanie w tej branży 

ściśle wiąże się z dokumentacją, kontrolą jakości i monitoringiem (Salunke, 2022; Mohita Thakur, 

2025). W przypadku e-commerce, elastyczność i szybkość procesu konfekcjonowania są priorytetem. 

Wykorzystuje się tu rozwiązania umożliwiające automatyczne dopasowanie opakowania do rozmiaru 

produktu, etykietowanie zgodne z wymaganiami platform sprzedażowych (np. Amazon) oraz 

możliwość personalizacji, np. dodawanie materiałów marketingowych. Konieczna jest też integracja  

z systemami ERP/WMS i szybka rekonfiguracja linii produkcyjnych (Jacobs, 2024; Huaman-Monzon  

i in., 2024). Z kolei w przemyśle ciężkim proces konfekcjonowania obejmuje pakowanie zbiorcze, 

foliowanie stretch hood lub termobkurczające, a także automatyczną paletyzację i zabezpieczanie 

produktów do transportu. Nacisk kładziony jest tu na wytrzymałość opakowania oraz odporność na 

czynniki środowiskowe i transportowe (Mosconi i in., 2024; Mahalik, 2014). Zróżnicowanie wymagań 

poszczególnych sektorów gospodarki pokazuje, że konfekcjonowanie nie jest procesem jednorodnym, 

lecz dostosowuje się do specyfiki produktu, regulacji prawnych i oczekiwań rynku. W Tabeli 2.5 
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zestawiono porównanie metod konfekcjonowania w wybranych branżach, wskazując ich główne cechy, 

technologie dominujące oraz kluczowe czynniki determinujące skuteczność i bezpieczeństwo procesu. 

Tabela 2.5. Metody konfekcjonowania w wybranych branżach. 

Branża 
Stosowane rozwiązania 

technologiczne 
Kluczowe wymagania 

Spożywcza 

MAP, linie form fill seal VFFS i HFFS, 

systemy flow pack, wagi 

wielogłowicowe, dozowniki 

objętościowe i wagowe, kontrola metali 

i skanery rentgenowskie, wizyjna 

kontrola jakości, wagi kontrolne, 

etykietowanie z kodami GS1, 

znakowanie daty przydatności, systemy 

śledzenia partii 

Higiena procesu i materiałów, 

utrzymanie świeżości i wydłużenie 

trwałości, integralność zgrzewu, 

utrzymanie łańcucha chłodniczego, 

identyfikowalność i zgodność z 

HACCP oraz ISO 22000, szybkie 

przezbrajanie i czyszczenie, 

minimalizacja kontaktu człowieka z 

produktem 

Farmaceutyczna 

Blistry termoformowane i typu 

cold-form Alu-Alu, linie do fiolek i 

ampułek z izolatorami lub RABS, 

technologia Blow Fill Seal dla 

preparatów płynnych, kontrola wizyjna 

obecności i poprawności, wagi 

kontrolne z rejestracją danych, 

serializacja i track and trace, 

etykietowanie z elementami 

zabezpieczającymi 

Zgodność z GMP i wymaganiami 

jakości dla wyrobów leczniczych, 

aseptyka i kontrola zanieczyszczeń, 

integralność zamknięć, pełna 

identyfikowalność z agregacją, 

integralność danych i audytowalność, 

walidacja urządzeń i procesów 

E-commerce 

Automaty pakujące pod wymiar, 

automatyczne formatowanie kartonów, 

systemy bagging do folii, dozowanie 

wypełnień, druk i aplikacja etykiet, 

sortery automatyczne, stanowiska pick 

and place, integracja z WMS i ERP 

Elastyczność i personalizacja, wysoka 

przepustowość w szczytach, 

dokładność etykietowania i 

kompletacji, minimalizacja kosztu 

jednostkowego i objętości przesyłki, 

odporność opakowań na transport 

kurierski, śledzenie zamówień i 

zwrotów 

Przemysł ciężki 

Owijarki stretch i systemy stretch hood, 

kapturowanie termokurczliwe, 

paletyzatory konwencjonalne i 

zrobotyzowane, wiązarki taśmą PET 

lub stalową, top-sheet i narożniki 

ochronne, linie workujące FFS dla 

materiałów sypkich, systemy 

znakowania i etykietowania ładunków, 

kontrola masy i stabilności palety 

Stabilizacja ładunku i bezpieczeństwo 

transportu, odporność opakowań na 

wilgoć, kurz i UV, ochrona 

antykorozyjna opcjonalnie z użyciem 

VCI, dostosowanie do wymogów 

transportu i składowania, zgodność z 

regulacjami dotyczącymi materiałów 

niebezpiecznych w tym ADR, trwałe 

znakowanie i identyfikowalność 

ładunków 
Opracowanie własne na podstawie: Mahalik, 2014; Chisenga i in., 2020; Hui i in., 2020; Thirupathi i in., 2023; 

Dodke, 2025. 

2.2.2. Wyzwania operacyjne i jakościowe w procesie konfekcjonowania 

 Mimo istotnej roli konfekcjonowania, proces ten wiąże się z wieloma wyzwaniami natury 

operacyjnej i jakościowej. Złożoność działań pakujących, wysokie wymagania higieniczne oraz presja 

czasu sprawiają, że nawet drobne uchybienia mogą prowadzić do poważnych konsekwencji.  

Jak zauważono w literaturze, nawet niewielkie odchylenia w przebiegu operacji pakowania czy 



  

37 

 

etykietowania potrafią skutkować problemami ekonomicznymi i reputacyjnymi dla producenta. Innymi 

słowy, błąd na tym etapie produkcji jest bardzo kosztowny, gdyż zazwyczaj dotyczy już w pełni 

wytworzonego produktu o wysokiej wartości dodanej (Elmadhoun i in. 2025). Poniżej przedstawiono 

typowe problemy pojawiające się w procesie konfekcjonowania, które stanowią wyzwania dla 

utrzymania płynności produkcji i wymaganej jakości wyrobów: 

• Odchylenia masy i dozowania – Niewłaściwe porcjowanie produktu (np. z powodu błędnej 

kalibracji wag lub zmienności surowca) skutkuje niezgodnością masy netto z deklaracją na 

opakowaniu. Zarówno niedowaga, jak i nadwyżka są niepożądane: pierwsza narusza przepisy  

i zaufanie klientów, druga generuje straty surowca i podnosi koszty jednostkowe. Utrzymanie 

wymaganej tolerancji masy wymaga ciągłego nadzorowania systemów naważających oraz ich 

regularnej kalibracji (McGuire i in., 2025). W praktyce przemysłowej często stosuje się wagi 

kontrolne (checkweighery) na końcu linii, odrzucające opakowania poza specyfikacją wagową. 

• Błędy etykietowania i oznakowania – Oznaczenie niezgodną etykietą lub kodem produktu może 

skutkować koniecznością wycofania wyrobu gotowego z rynku (ang. product recall), szczególnie 

gdy błąd dotyczy informacji alergennych lub daty ważności. Typowe problemy to: pomylenie 

etykiet między produktami, brak części informacji na etykiecie, nieczytelny nadruk lub 

nieprawidłowe umiejscowienie etykiety na opakowaniu. Zdarzają się również sytuacje naklejenia 

etykiety krzywo lub uszkodzenia jej podczas aplikacji (Soon i in., 2021). Zapobieganie tym błędom 

wymaga ścisłej synchronizacji systemu etykietującego z podajnikiem produktów oraz wizyjnej 

kontroli obecności etykiety i ich czytelności. 

• Uszkodzenia opakowań i nieszczelność – Opakowanie pełni funkcję ochronną, dlatego jego 

niezgodość (np. uszkodzona folia, nieszczelna zgrzeina, niedomknięta pokrywka) zagraża jakości 

produktu (utratą świeżości, wysychaniem, zakażeniem drobnoustrojami). Źródłem problemów 

mogą być zarówno wady materiałów opakowaniowych, jak i nieprawidłowe ustawienia maszyn 

pakujących. Szczególną uwagę zwraca się na integralność opakowań próżniowych i MAP 

(pakowanych w atmosferze modyfikowanej), gdzie nawet mikro nieszczelność niweczy założony 

wydłużony okres przydatności do spożycia. Dlatego powszechnie wdraża się testery szczelności 

opakowań oraz systemy wizyjne monitorujące jakość zgrzein i obecność ciał obcych na łączeniach 

folii. Raporty branżowe wskazują, że defekty opakowań są jedną z częstszych przyczyn reklamacji 

produktów spożywczych (Altemimi i in., 2025). 

• Awaryjność i przestoje linii – Linie konfekcjonujące składają się z wielu współpracujących 

urządzeń (dozowniki, pakowaczki, etykieciarki, systemy przenośników), których praca musi być 

precyzyjnie zsynchronizowana. Braki synchronizacji lub awaria jednego z elementów często 

powoduje zatrzymanie linii (Riccetti, 2013). Na przykład, jeśli etykieciarka nie nadąża za tempem 

napełniarki, dochodzi do gromadzenia się produktów i konieczności wstrzymania produkcji. Częste 

przezbrojenia ze względu na różne formaty opakowań również generują przestoje i zwiększają 
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ryzyko błędów ustawień. Wyzwanie stanowi zatem zarówno zapewnienie niezawodności maszyn 

(co wiąże się z regularnym serwisem i wdrażaniem prewencyjnych strategii utrzymania ruchu), jak 

i optymalizacja harmonogramów produkcji, by minimalizować liczbę formatów opakowań w ciągu 

zmiany produkcyjnej. 

• Czynnik ludzki i organizacja pracy – Pomimo postępu automatyzacji, wiele operacji 

konfekcjonowania wciąż wymaga interwencji człowieka (np. kontrola wzrokowa, uzupełnianie 

materiałów). Błędy operatorów, niedostateczne przeszkolenie personelu czy przemęczenie mogą 

przekładać się na pomyłki w nastawach maszyn lub przeoczenie wad produktu. Organizacyjne 

aspekty, takie jak odpowiednie planowanie obsady na linii pakującej, monitorowanie kluczowych 

wskaźników (np. OEE) oraz motywowanie pracowników do zgłaszania nieprawidłowości, również 

należą do istotnych czynników jakościowych (Ngadiman i in., 2016). Literatura podkreśla potrzebę 

kształtowania proaktywnych kultur jakości, w których personel rozumie znaczenie standardów 

pakowania i czuje się odpowiedzialny za końcowy wynik procesu (Kałkowska, 2020). 

 Zidentyfikowane powyżej problemy wskazują, że nadzorowanie nad procesem konfekcjonowania 

wymaga wieloaspektowego podejścia. Konieczne jest łączenie rozwiązań technicznych (automatyzacja, 

czujniki, systemy wizyjne) z działaniami organizacyjnymi (szkolenia, procedury kontrolne) w celu 

minimalizacji ryzyka błędów. Utrzymanie wysokiej jakości i efektywności pakowania jest wyzwaniem, 

zwłaszcza przy rosnącej złożoności produktów i skracającym się cyklu życia wyrobów. Dlatego 

przedsiębiorstwa produkcyjne poszukują nowych metod i narzędzi, które wesprą utrzymanie stabilności 

procesu konfekcjonowania mimo wymienionych trudności. Kierunek tych poszukiwań wyznaczają 

aktualne trendy technologiczne w przemyśle o czym traktuje kolejna część tego przeglądu. 

2.2.3. Metody oraz narzędzia nadzorowania w procesach konfekcjonowania 

 W literaturze opisano szereg podejść mających na celu usprawnienie nadzorowania nad procesami 

konfekcjonowania, począwszy od klasycznych metod organizacyjnych po zaawansowane techniki 

sztucznej inteligencji. Podejścia szczupłego zarządzania produkcją (lean manufacturing) oraz Total 

Productive Maintenance (TPM) były z powodzeniem wdrażane w zakładach konfekcjonujących 

produkty w celu poprawy ich wydajności i jakości. Przykładowo, Habib i in. (2023) zastosowali 

narzędzia lean (mapowanie strumienia wartości VSM, system kanban, metodę SMED) w fabryce 

etykietowania i pakowania, uzyskując skrócenie czasu realizacji o ok. 7% oraz aż 83% redukcję 

wskaźnika reklamacji klientów. Podobnie Farah-Alva i in. (2024) wykazali, że integracja filozofii lean 

z filarami TPM w procesie pakowania produktów rolnych przekłada się na wzrost produktywności  

i eliminację strat (np. przestojów i braków). Również metody ciągłego doskonalenia wsparte danymi 

IIoT testowane przez Sundar i in. (2024) opisali wykorzystanie Industrial IoT wraz z metodyką Kata do 

usprawnienia linii montażowo-pakującej, co pozwoliło zwiększyć produktywność operacji. Warto 

jednak zauważyć, że podejścia te koncentrują się głównie na organizacyjnej stronie procesu i eliminacji 
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marnotrawstwa, nie zapewniając automatycznego nadzoru jakości w czasie rzeczywistym ani predykcji 

błędów a efektywność zależy nadal od poprawności wdrożenia i zaangażowania personelu. 

 Różnorodne metody nadzorowania zautomatyzowanego procesu naważania i porcjowania były 

opisywane w literaturze i obejmują one zarówno podejścia tradycyjne, jak i nowoczesne oparte na AI. 

Na przykład Matuszek i Opolska (2012) przeprowadzili analizę statystyczną automatycznego procesu 

dozowania składników paszy, wykorzystując m.in. regresję liniową i testy nieparametryczne, co 

ujawniło istotne odchylenia mas dozowanych komponentów oraz ograniczenia dokładności urządzeń 

dozujących (największe błędy stwierdzono przy naważaniu pszenicy). Bazydło i in. (2015) opracowali 

zintegrowany system dynamicznego ważenia oparty na środowisku SCADA połączonym  

z Matlab/LabVIEW, umożliwiający zaawansowane przetwarzanie sygnałów wagowych, wizualizację 

danych i sterowanie procesem w czasie rzeczywistym. Prototyp ten wykazał skuteczność w tłumieniu 

zakłóceń i bieżącym nadzorze masy produktu, jednak jego implementacja wymagała integracji wielu 

środowisk programistycznych (funkcjonalności niemożliwe do osiągnięcia w standardowym SCADA). 

W branży spożywczej istotnym zagadnieniem jest optymalizacja pracy wielogłowicowych naważarek. 

García-Jiménez i in. (2021) zaproponowali nowy algorytm doboru kombinacji zasobników  

w dwuwarstwowej naważarce wielogłowicowej, który zmniejszył zmienność masy porcji i poprawił 

wydajność konfekcjonowania w porównaniu z konwencjonalnymi algorytmami sterowania. 

Rozwiązanie to zwiększyło stabilność procesu ważenia, choć dotyczyło specyficznej konfiguracji 

urządzenia, co ogranicza uniwersalność metody (dedykowane do określonego typu naważarki). Z kolei 

w obszarze farmaceutycznym pojawiają się rozwiązania oparte na AI. Barmpalexis i in. (2020) 

zastosowali sieć neuronową do predykcji rezultatów napełniania kapsułek na podstawie właściwości 

peletek (gęstości nasypowej, rozmiaru cząstek), uzyskując model o wysokiej dokładności (R2 > 0,95)  

i lepszej zdolności uogólniania niż klasyczna regresja. Również w przemyśle spożywczym odnotowano 

korzyści z AI, gdzie Liu (2022) donosi o regulatorze rozmyto-neuronowym zaimplementowanym w linii 

rozlewu piwa, który zredukował maksymalne odchylenie masy napełnienia do 1,7 g i zwiększył precyzję 

dozowania o 50% względem klasycznego PID (przyspieszając czas reakcji o 55%). Podsumowując, 

mimo obiecujących wyników tych zróżnicowanych metod nadzoru (zarówno konwencjonalnych, jak  

i inteligentnych), brak jest integracji tych rozwiązań w jednym spójnym, inteligentnym systemie 

nadzorującym cały proces a dostępne prace skupiają się na wybranych etapach lub technologiach. 

 Dużą uwagę poświęca się wykorzystaniu systemów wizyjnych do kontroli jakości opakowań  

i etykiet na liniach konfekcjonowania. Już konwencjonalne rozwiązania oparte o czujniki wizyjne  

i kamery znacząco podniosły skuteczność wykrywania wad opakowań w porównaniu do kontroli 

manualnej. Przykładowo, (Połomski, 2016) opisał wdrożenie zautomatyzowanej kontroli etykiet  

w przemyśle farmaceutycznym, gdzie system wizyjny weryfikował poprawność etykiet (m.in. poprzez 

odczyt kodu kreskowego Pharmacode lub kodu EAN-13), sprawdzał nadruk daty ważności i numeru 

serii oraz obecność etykiety na każdym opakowaniu. Rozwiązanie to, bazujące na zintegrowanych 

czujnikach wizyjnych, zapewniło zgodność procesu etykietowania z wymogami GMP i wyeliminowało 
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wiele błędów ludzkich. W ostatnich latach do kontroli opakowań coraz śmielej wkraczają metody 

głębokiego uczenia i zaawansowane algorytmy analizy obrazu, które znacząco zwiększają zakres  

i precyzję wykrywania defektów. Banús i in. (2021) opracowali system wizyjny do inspekcji zamknięcia 

i zgrzeiny opakowań pizzy, wykorzystujący sieci konwolucyjne (ResNet) do klasyfikacji poprawności 

każdej tacki. Dzięki temu rozwiązaniu możliwa stała się automatyczna kontrola 100% opakowań w 

linii, osiągając przy tym precyzję wykrywania wad na poziomie ~99,8% oraz dwukrotnie większą 

przepustowość inspekcji w porównaniu z pracą manualną. Podobne wyniki uzyskano w branży 

farmaceutycznej, gdzie badacze zaproponowali system oparty na ulepszonym algorytmie detekcji 

YOLOv8 do kontroli blistrów z tabletkami. Uzyskano skuteczność mAP rzędu 97,4% przy prędkości 

~79 klatek/s, co przewyższa osiągi wcześniejszych modeli i umożliwia wychwytywanie wad (np. 

brakujących lub uszkodzonych tabletek) w czasie rzeczywistym (Vijayakumar i in., 2024). Takie 

rozwiązanie, określone jako CBS-YOLOv8, dzięki ulepszonej ekstrakcji cech i optymalizacji obliczeń 

potrafi szybciej i dokładniej identyfikować defekty blistrów, usprawniając system zapewnienia jakości 

na liniach pakujących leki. Należy podkreślić, że systemy oparte na wizji maszynowej, zwłaszcza  

w połączeniu z AI pozwalają wykrywać szerokie spektrum nieprawidłowości: od brakującej etykiety 

lub krzywo naklejonej naklejki, przez nieszczelną zgrzeinę folii, aż po drobne uszkodzenia produktu. 

Ograniczeniem pozostaje jednak konieczność zgromadzenia odpowiednich danych treningowych  

i dostosowania algorytmu do warunków konkretnej linii (oświetlenie, szybkość podajników itp.),  

a integracja takiego systemu z istniejącą infrastrukturą sterującą bywa wyzwaniem inżynieryjnym. 

 Kolejnym nurtem badań jest analiza danych procesowych i predykcja występowania 

niezgodności z użyciem sztucznej inteligencji. Zamiast reagować na wykryte wady po fakcie, celem 

tych rozwiązań jest wcześniejsze przewidywanie, kiedy produkt lub partia może okazać się niezgodna, 

lub kiedy nastąpi awaria urządzenia pakującego. W literaturze pojawiają się pierwsze próby 

wykorzystania uczenia maszynowego do bieżącej analizy parametrów procesu konfekcjonowania. 

Przykładowo, Antony (2024) zaprezentował hybrydowe podejście, w którym model logistic regression 

szacuje prawdopodobieństwo wystąpienia wady produktu na podstawie danych historycznych, zaś 

model lasu losowego (random forest) klasyfikuje typ wykrytej niezgodności. Połączenie tych dwóch 

technik pozwoliło znacząco poprawić skuteczność identyfikacji wadliwych jednostek produkcji. Co 

istotne, rozwiązanie to wykorzystuje dane z czujników linii i urządzeń IoT w czasie rzeczywistym, 

umożliwiając automatyczne monitorowanie procesu i korygowanie ustawień zanim powstaną braki. 

Również w obszarze predykcyjnego utrzymania ruchu odnotowuje się wdrożenia dotyczące linii 

pakujących. Dzięki czujnikom IoT mierzącym m.in. drgania, temperatury i obciążenia maszyn, dane te 

analizowane są przez algorytmy ML w poszukiwaniu subtelnych oznak zużycia lub rozkalibrowania 

urządzeń. Jak podaje raport PMMI przytoczony przez Egan (2023), systemy AI potrafią wykryć 

anomalie takie jak wzrost wibracji czy drobne odchyłki wymiarów opakowań i przewidzieć awarię 

zanim do niej dojdzie, co minimalizuje nieplanowane przestoje i poprawia OEE. Zastosowania AI  

w konfekcjonowaniu obejmują ponadto analizy danych łańcucha dostaw, optymalizację planowania 
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produkcji oraz personalizację opakowań pod gusta klientów. Wdrożenia te napotykają jednak pewne 

wyzwania, na które zwracają uwagę zarówno badacze, jak i praktycy przemysłowi. Jednym z głównych 

problemów jest zarządzanie dużymi strumieniami danych generowanymi przez czujniki i systemy. 

Wymaga to solidnej infrastruktury IT oraz zaawansowanych narzędzi analitycznych, aby z danych tych 

wydobyć użyteczne wnioski. Ponadto konieczne jest posiadanie wyspecjalizowanej kadry zdolnej do 

obsługi i interpretacji systemów AI, co oznacza potrzebę szkoleń lub zatrudnienia nowych ekspertów. 

Inną barierą bywa integracja różnych źródeł danych (np. wagi, kamery, sterowniki PLC różnych 

producentów) i zapewnienie ich spójności. Brak jednolitych standardów komunikacyjnych utrudnia 

tworzenie jednego, centralnego systemu nadzoru. 

 W Tabeli 2.6 przedstawiono syntetyczny przegląd metod nadzorowania stosowanych w procesach 

konfekcjonowania, obejmujący kontekst ich zastosowania, uzyskane rezultaty, a także zidentyfikowane 

ograniczenia. Zestawienie to pozwala uchwycić różnorodność podejść od metod organizacyjnych, 

poprzez rozwiązania statystyczne i systemowe, aż po techniki oparte na sztucznej inteligencji i wizji 

maszynowej oraz wskazuje na ich zalety i ograniczenia w praktyce przemysłowej. 

Tabela 2.6. Przegląd metod oraz narzędzi nadzorowania procesów konfekcjonowania w literaturze. 

Metoda / 

narzędzie 
Obszar 

Najważniejsze 

wyniki 
Ograniczenia / problemy Źródło 

Lean (VSM, 

Kanban, 

SMED) 

Etykietowanie 

i pakowanie 

Spadek lead time ok. 

7%; spadek 

reklamacji klientów 

ok. 83% 

Metoda organizacyjna (brak 

nadzoru jakości w czasie 

rzeczywistym i predykcji); 

zależność od 

kultury/zaangażowania 

Habib, 

Rizvan, 

Ahmed 

(2023) 

Lean + TPM 

Pakowanie 

produktów 

rolnych 

Wzrost 

produktywnośći; 

poprawa wskaźników 

(przestoje, braki) 

Skupienie na eliminacji 

marnotrawstwa, nie na 

analityce online; wymagane 

trwałe zmiany organizacyjne 

Farah-Alva, 

Montaño-Va

ez, 

Quiroz-Flor

es (2024) 

IIoT + 

metodyka 

Kata  

Linia 

montażowo-p

akująca 

Wzrost 

produktywności 

dzięki cyfrowemu 

monitorowaniu 

Odcinkowe wdrożenie; brak 

pełnej integracji  

z modułami QC  

i predykcją 

Sundar, 

Chowdhury, 

Kamarthi 

(2024) 

Analiza 

statystyczna 

(regresja, 

testy 

nieparametryc

zne) 

Dozowanie/na

ważanie 

składników  

Wykryte istotne 

odchylenia mas; 

wskazanie 

komponentu o 

największym błędzie  

Ograniczona dokładność 

urządzeń; brak nadzoru 

online 

Matuszek, 

Opolska 

(2012) 

Algorytm 

doboru 

kombinacji 

(naważarka 

wielogłowico

wa 2-warstw) 

Porcjowanie 

Spadek wariancji 

masy porcji; wzrost 

przepustowości 

Metoda dedykowana do 

konkretnej architektury 

naważarki  

García-Jimé

nez, 

García-Díaz, 

Pulido-Roja

no (2021) 

Sieć 

neuronowa  

Napełnianie 

kapsułek 

Wysoka dokładność 

modelu R² > 0,95;  

Dane najczęściej offline; 

brak pełnej integracji in-line 

Barmpalexis 

i in. (2020) 
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Regulator 

rozmyto-neur

onowy  

Rozlew piwa  

Spadek maks. 

odchylenie do ~1,7 g; 

wzrost precyzji 

~+50%; spadek czasu 

reakcji ~55% 

Wymaga strojenia i 

stabilnych warunków; 

studium przypadku 

Liu (2022) 

System 

wizyjny 

(czujniki + 

OCR/kody) 

Etykietowanie  

Automatyczna 

weryfikacja 

obecności/zgodności 

etykiet; redukcja 

błędów ludzkich 

Bez DL; dostrajanie do 

SKU/warunków oświetlenia 

Połomski 

(2016) 

Głębokie 

uczenie 

(CNN/ResNet

) + 3 kamery 

Inspekcja 

zgrzewu/opak

owań  

Skuteczność ~99,8%; 

~2× większa 

przepustowość vs. 

inspekcja manualna 

Duże zbiory etykietowanych 

danych; dostrajanie do 

produktu 

Banús i in. 

(2021) 

Detekcja 

obiektów 

(CBS-YOLO

v8) 

Blistry 

farmaceutycz

ne  

mAP ~97,4%; ~79 

FPS (real-time) 

Potrzeba danych 

treningowych; adaptacja do 

linii/produktów 

Vijayakuma

r i in. (2024) 

Model 

hybrydowy: 

Logistic 

Regression + 

Random 

Forest 

Predykcja 

niezgodności  

Lepsza identyfikacja 

wadliwych jednostek; 

monitoring online 

Potrzeba walidacji 

przemysłowej; integracja 

danych z wielu źródeł 

Akisetty, 

Ayyagari 

(2024) 

AI do 

wykrywania 

anomalii 

(analiza 

wibracji/wym

iarów) 

Predykcyjne 

UR w liniach 

pakujących 

Wczesne ostrzeganie 

o awariach; poprawa 

OEE 

Raport branżowy, 

uogólnienia 
Egan (2023)  

Predykcyjne 

utrzymanie 

ruchu (IoT + 

ML) 

Linie 

produkcyjne/ 

pakujące 

Skuteczne 

przewidywanie 

awarii; planowanie 

serwisu; spadek 

przestoji 

Wysokie wymagania dot. 

danych i integracji IIoT 

Ayvaz, 

Alpay 

(2021) 

„Smart 

Quality” (IoT 

+ AI + 

analityka) 

Pakowanie 

Uzasadnia QC w 

czasie rzeczywistym; 

przegląd metod i 

wdrożeń 

Luka wdrożeniowa: brak 

architektur end-to-end 

Sundaram, 

Zeid (2023) 
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SCADA dla 

linii HFFS 

(MAP) 

Pakowanie 

żywności 

(świeże 

warzywa) 

Sterowanie/monitor

ing parametrów 

(temp. zgrzewu, 

gaz, prędkość); 

wzrost 

elastyczności, 

spadek błędów 

operatorów 

Wdrożenie case-study; 

wymagania 

integracyjne 

Seifi i in. 

(2023) 

Opracowanie własne na podstawie: Antny i in., 2024; Ayvaz i in., 2021; Banus i in., 2021; Barmpalexis i in., 2020; 

García-Jiménez, 2021; Liu, 2022; Matuszek, 2012; Połomski, 2016; Seifi i in., 2023; Sundaram i in., 2023; Vasuki 

i in., 2023. 

 Mimo opisanych postępów nadal brakuje w literaturze spójnych rozwiązań obejmujących 

kompleksowe nadzorowanie całego procesu konfekcjonowania jako systemu. Większość prac skupia 

się na wybranych etapach lub pojedynczych zadaniach np. kontrola wizyjna opakowań, predykcja awarii 

maszyny pakującej albo monitorowanie dokładności naważania i często prezentowana jest w formie 

studium przypadku bądź symulacji laboratoryjnej. Stwierdza się wręcz, że brakuje opracowań 

integrujących ważenie, dozowanie, pakowanie, etykietowanie i kontrolę jakości w jeden 

skoordynowany system, zdolny do działania w rzeczywistych warunkach produkcyjnych. Dotyczy to 

zwłaszcza średnich i małych przedsiębiorstw, gdzie zmienność asortymentu, ograniczona powtarzalność 

procesów oraz mieszana infrastruktura technologiczna stanowią dodatkowe utrudnienie. Powyższe 

obserwacje pozwalają identyfikować potrzebę prowadzenia badań nad opracowaniem metodycznych 

zasad projektowania i wdrażania systemów nadzorowania procesu konfekcjonowania, które mogą być 

elastycznie adaptowane do różnych środowisk produkcyjnych. Integracja różnorodnych metod (czujniki 

masy, systemy wizyjne, analityka danych) w jedną inteligentną platformę pozwala nie tylko eliminować 

poszczególne błędy, lecz również osiągać efekt synergii, w którym informacje z jednego etapu (np. 

wahania masy porcji) mogą automatycznie wpływać na decyzje na kolejnych etapach (np. dostosowanie 

prędkości pakowania czy wygenerowanie alarmu do prewencyjnej regulacji maszyny).  

W konsekwencji, dotychczasowe prace stanowią cenne punkty odniesienia i pokazują możliwości 

zastosowania metod i narzędzi AI w nadzorze produkcji, jednak żadne nie rozwiązuje w pełni 

problemu kompleksowego nadzorowania procesu konfekcjonowania, co uzasadnia podjęcie badań 

w tym kierunku. 

2.2.4. Integracja i perspektywy rozwoju systemów nadzorowania procesu konfekcjonowania 

 Jednym z kluczowych wyzwań w nadzorowaniu całego procesu konfekcjonowania jest obecnie 

integracja zróżnicowanych źródeł danych i narzędzi. Linie pakujące generują informacje z wielu 

urządzeń, które często działają w odrębnych obszarach technologicznych. Brak ujednoliconych 

standardów komunikacji i interoperacyjności sprawia, że łączenie tych danych w spójny obraz procesu 

bywa utrudnione (Ji i in., 2025). Raporty branżowe wskazują, że trudności z integracją danych z różnych 

źródeł należą do najczęściej wymienianych barier we wdrażaniu inteligentnych rozwiązań, obok braku 

odpowiednio wykwalifikowanego personelu oraz problemów z infrastrukturą informatyczną. 
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Konsekwencją jest rozproszenie narzędzi analitycznych i nadzorczych: np. osobne aplikacje do 

monitorowania stanu maszyn, oddzielne systemy kontroli jakości oraz niezintegrowane moduły 

raportowania. W efekcie zarządzanie procesem konfekcjonowania jako całością jest mało efektywne, 

gdyż informacje o odchyleniach czy awariach nie przepływają swobodnie między warstwami 

produkcyjnymi. W literaturze podkreśla się, że dopiero ścisła współpraca wszystkich poziomów od 

urządzeń na hali po systemy MES/ERP umożliwia pełne wykorzystanie danych procesowych  

w decyzjach operacyjnych. Mimo to kompleksowa integracja nadal stanowi wyzwanie, a wiele 

proponowanych rozwiązań ma charakter wyspowy lub prototypowy (Mantravadi i in., 2023). 

 Patrząc perspektywicznie, integracja systemów nadzorujących konfekcjonowanie wpisuje się  

w szersze koncepcje Przemysłu 5.0, kładącego nacisk na synergiczną współpracę człowieka z maszyną 

oraz zrównoważony rozwój produkcji. Oznacza to, że przyszłe systemy nadzoru będą projektowane nie 

tylko pod kątem automatyzacji, ale też „human-centric” uwzględniając rolę operatorów jako nadzorców 

i beneficjentów informacji. Przemysł 5.0 zakłada łączenie kreatywności i wiedzy eksperckiej ludzi  

z możliwościami sztucznej inteligencji i robotyki, co ma przynieść wyższy poziom personalizacji 

produktów oraz elastyczności procesów (Stall, 2025). W kontekście konfekcjonowania oznacza to 

zdolność szybkiego przezbrojenia linii i dostosowania parametrów pakowania do indywidualnych 

zamówień czy preferencji klienta. Już dziś w branży e-commerce obserwuje się trend „mass 

customization” opakowań, gdzie zintegrowane linie potrafią automatycznie dopasować format pudełka, 

nadruk etykiety czy dołożenie materiałów marketingowych pod konkretny produkt lub odbiorcę. 

Wymaga to jednak ścisłego powiązania systemu pakowania z danymi z poziomu zamówień i modułami 

wykonawczymi. W literaturze wskazuje się na potrzebę takiej integracji: przyszłe linie powinny 

charakteryzować się personalizacją i elastycznością pakowania oraz integracją z automatycznymi 

sorterami i systemami etykietującymi sterowanymi danymi z systemów ERP (Pavel i in., 2024). Równie 

istotny jest wymiar zrównoważonego rozwoju. Zintegrowane systemy nadzorujące mogą przyczynić się 

do ograniczenia marnotrawstwa materiałów opakowaniowych i energii. Poprzez ciągłe monitorowanie 

parametrów procesu i szybką identyfikację odchyleń, zmniejsza się odsetek wadliwych lub nadmiernie 

zużywających surowce opakowań. Trend ten współgra z ideą gospodarki o obiegu zamkniętym, gdzie 

minimalizacja odpadów i optymalizacja zużycia materiałów staje się priorytetem. System nadzorowania 

przyszłości mógłby np. dynamicznie dostosowywać ustawienia maszyn pakujących, by zapewnić jak 

najmniejsze zużycie folii przy zachowaniu wymaganej jakości zabezpieczenia produktu (Turner i in., 

2022). Takie podejście nie tylko obniża koszty i wpływ środowiskowy, ale też wpisuje się w rosnące 

oczekiwania społeczne wobec zielonych technologii w przemyśle. 

 Podsumowując, integracja systemów nadzorowania procesu konfekcjonowania staje się warunkiem 

koniecznym dla osiągnięcia w pełni inteligentnych i efektywnych linii produkcyjnych. W literaturze 

odnotowuje się wprawdzie liczne obiecujące rezultaty cząstkowe, od zaawansowanych systemów 

wizyjnej kontroli jakości po platformy predykcyjnej konserwacji, jednak brak wciąż kompleksowych 

rozwiązań integrujących te elementy w jednolity ekosystem działający w warunkach przemysłowych. 
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Wielu autorów podkreśla potrzebę dalszych badań ukierunkowanych na holistyczne ujęcie nadzoru 

produkcji, ze szczególnym naciskiem na pełną integrację nowych technologii z istniejącą infrastrukturą 

fabryczną. Fakt ten potwierdza słuszność kierunku przyjętego w niniejszej rozprawie, czyli dążenie do 

opracowania własnego, zintegrowanego systemu nadzorowania procesu konfekcjonowania jest 

odpowiedzią na zidentyfikowaną lukę i stanowi próbę połączenia rozproszonych dotąd funkcji 

monitorowania, kontroli i analizy w jedno spójne rozwiązanie. Dzięki temu możliwe będzie nie tylko 

zweryfikowanie koncepcji przedstawianych w literaturze, ale przede wszystkim praktyczne 

sprawdzenie ich skuteczności w warunkach rzeczywistej linii pakującej. 

2.3. Podsumowanie stanu wiedzy 

 W wyniku badań nad teoretycznymi aspektami związanymi z tematem pracy przedstawiono  

i usystematyzowano kluczowe zagadnienia związane z inteligentnym nadzorowaniem procesów 

produkcyjnych: od ewolucji podejścia do nadzoru (od rozwiązań manualnych do koncepcji Przemysłu 

5.0), przez determinanty skuteczności, po funkcje nowoczesnych systemów, wspierające je technologie 

oraz architekturę warstwową poszerzoną o komponenty AI i moduły decyzyjne. Uporządkowano 

metody oceny skuteczności i wskaźniki KPI, które tworzą spójny aparat pomiarowy dla wydajności, 

jakości, niezawodności i ekonomiki procesów. Następnie skoncentrowano się na procesie 

konfekcjonowania, charakteryzując jego znaczenie, typowe wyzwania, praktykowane metody nadzoru 

oraz perspektywy integracji. 

 Podsumowując przeprowadzony w rozdziale drugim przegląd aktualnego stanu wiedzy, można 

zauważyć, iż pomimo wyraźnego rozwoju metod i systemów nadzorowania nadal brakuje 

jednoznacznych rozwiązań w zakresie kompleksowego nadzorowania. Dotyczy to w szczególności 

procesu konfekcjonowania, gdzie złożoność technologiczna, wymogi jakościowe i presja czasu 

kumulują się w jednym, wrażliwym na zakłócenia fragmencie łańcucha wytwarzania. W tym świetle 

identyfikacja ograniczeń i rozbieżności między stanem badań a potrzebami przemysłu (w 

szczególności potrzeb przedsiębiorstwa będącego przedmiotem badań) stanowi niezbędny punkt 

wyjścia dla dalszych prac. Poniżej przedstawiono najistotniejsze ograniczenia obecnego stanu wiedzy, 

które wprost uzasadniają podjęcie prac badawczo-wdrożeniowych oraz przygotowanie niniejszej 

rozprawy doktorskiej, ukierunkowanych na opracowanie i implementacje inteligentnego systemu 

nadzorowania procesu konfekcjonowania: 

1. Ograniczone podejście do procesu konfekcjonowania w literaturze naukowej. Zdecydowana 

większość publikacji traktuje pojedyncze operacje (np. naważanie, pakowanie, etykietowanie) jako byty 

odrębne, bez ujęcia całego procesu konfekcjonowania jako spójnego systemu technologicznego ze 

sprzężeniami między operacyjnymi. Skutkuje to brakiem modeli integrujących przepływ informacji  

i decyzji między operacjami oraz utratą możliwości oceny synergii i kumulacji błędów na kolejnych 

etapach. 
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2. Dominacja rozwiązań teoretycznych i symulacyjnych nad badaniami wdrożeniowymi.  

W licznych pracach prezentowane są wyniki na danych laboratoryjnych lub syntetycznych albo studia 

przypadków. Rzadkością są wdrożenia „end-to-end” w warunkach przemysłowych dla złożonych linii 

konfekcjonujących, uwzględniające zmienność SKU, przezbrojenia, zróżnicowane źródła danych oraz 

ograniczenia komunikacyjne i czasowe. To utrudnia ocenę transferowalności i trwałości efektów. 

3. Dla podobnych problemów istnieje wiele propozycji rozwiązań pozytywnie zweryfikowanych, 

lecz brak podejścia integrującego lub wskazówek co do optymalnego wyboru narzędzi i metod. 

Dojrzałe rozwiązania cząstkowe (np. algorytmy doboru kombinacji w naważarkach, systemy wizyjne  

z DL do inspekcji zgrzewu, modele ML dla predykcyjnego UR) wskazują na potencjał technologiczny, 

jednak funkcjonują zwykle w izolacji. Brakuje architektur łączących akwizycję, analitykę i sterowanie 

z poziomu całego procesu, a nie pojedynczej maszyny lub operacji. 

 Powyższe ograniczenia wzmacniają znaczenie szeregu problemów praktycznych, które uwypuklają 

lukę między koncepcją a fabryką. Niska jakość, niejednorodność i niesynchronizowanie danych  

z urządzeń wagowych, systemów wizyjnych, czujników procesowych i sterowników PLC utrudniają 

budowę niezawodnych modeli ML/DL, szczególnie tam, gdzie występują rzadkie zdarzenia (np. 

mikronieszczelności, defekty etykiet, sporadyczne awarie). Integracja i interoperacyjność warstw 

napotykają bariery protokołów komunikacyjnych, formatów danych i spójności semantycznej, a także 

na wymogi deterministycznego działania w czasie rzeczywistym, co jest krytyczne przy inspekcji 100% 

strumienia i podejmowaniu decyzji „online”.  

 Dodatkowym utrudnieniem jest zmienność procesu wynikająca z częstych przezbrojeń  

i różnorodności formatu opakowań, bez kompleksowego zarządzania recepturami (parametry/tolerancje 

procesu), i walidacji nastaw po zmianach konfiguracji trudno o stabilność i powtarzalność. Nie bez 

znaczenia pozostają kwestie organizacyjne jak niedobór kompetencji integracyjnych i analitycznych, 

konieczność rozwoju ról i procedur a także zaufanie operatorów do systemów AI. Algorytmy 

postrzegane jako „czarne skrzynki” wymagają przejrzystych mechanizmów wyjaśniania, 

audytowalności i nadzoru nad cyklem życia modeli zaś integracja technologii operacyjnych z sieciami 

IT rodzi nowe wymagania w zakresie cyberbezpieczeństwa i traceability.  

 Ważnym aspektem jest również niedojrzałość infrastruktury integracyjnej. Raporty branżowe 

wskazują, że choć aż 89% firm produkcyjnych uznaje AI za kluczowy element transformacji cyfrowej, 

to jedynie około 16% osiągnęło zamierzone rezultaty wdrożenia co potwierdza skalę luki (Windmann  

i in., 2024). Najczęściej wskazywane bariery to trudności z integracją danych z różnych źródeł, brak 

odpowiednio przeszkolonego personelu oraz wyzwania związane z bezpieczeństwem informacji  

i cyberbezpieczeństwem systemów produkcyjnych. Na to wszystko nakłada się konieczność wykazania 

mierzalnych korzyści w relacji do nakładów. Wdrożenia systemów nadzorowania powinny być 

uzasadnione istotną, statystycznie potwierdzoną poprawą wskaźników OEE, FPY, DPMO, 

MTBF/MTTR, scrap, COPQ, OTD czy CCR/RCR, z równoległą analizą controllingową i ujęciem 
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kosztu jakości. Praktyka pokazuje również niedobór elastycznych rozwiązań „plug-and-play”, zdolnych 

do pracy w zróżnicowanych warunkach produkcyjnych bez kosztownej personalizacji; ryzyko 

uzależnienia od dostawcy i rosnące całkowite koszty posiadania dodatkowo zwiększają próg wejścia 

dla przedsiębiorstw, zwłaszcza MŚP. 

 W konsekwencji przedstawione ograniczenia i wyzwania wskazują, że choć literatura dostarcza 

wielu przykładów cząstkowych rozwiązań, brak jest ustalonej metodyki pozwalającej na budowę 

kompleksowych systemów nadzorowania procesu konfekcjonowania. Każdorazowe wdrożenie 

wymaga zatem przeprowadzenia działań badawczych dostosowanych do specyfiki danego zakładu oraz 

doboru odpowiednich narzędzi i metod, co pozwala na identyfikację krytycznych parametrów 

technologicznych, określenie ich wartości granicznych oraz walidację skuteczności proponowanych 

rozwiązań w rzeczywistych warunkach przemysłowych. 

 W przypadku przedsiębiorstwa Mróz S.A. uzasadnieniem podjęcia prac są konkretne problemy 

procesowe i związane z nimi straty. Celem rozprawy doktorskiej jest wykorzystanie dostępnej wiedzy 

naukowej i technologicznej do opracowania oraz wdrożenia inteligentnego systemu nadzorowania 

zautomatyzowanego procesu konfekcjonowania w tym właśnie przedsiębiorstwie. Projektowany system 

ma umożliwiać: 

• wczesne wykrywanie nieprawidłowości w przebiegu procesu, 

• stabilizację i kontrolę parametrów operacyjnych, 

• bieżącą ocenę krytycznych charakterystyk jakościowych, 

• wsparcie decyzyjne operatorów i personelu technicznego. 
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3. Koncepcja i projekt systemu  

3.1. Środowisko wdrożeniowe 

 Aby możliwe było skuteczne zaprojektowanie i implementacja inteligentnego systemu 

nadzorowania, konieczne stało się szczegółowe rozpoznanie uwarunkowań techniczno-organizacyjnych 

przedsiębiorstwa oraz diagnoza stanu wyjściowego procesu konfekcjonowania.  

Prace badawczo-wdrożeniowe prowadzone były w zakładzie produkcyjnym Foodmakers Sp.  

z o.o., należącym do Grupy Kapitałowej Mróz S.A. (Rysunek 3.1). Obiekt zlokalizowany jest  

w nowoczesnym kompleksie spełniającym standardy jakościowe, takie jak BRC i IFS. Organizacja 

przedsiębiorstwa oparta jest na klasycznej strukturze funkcjonalnej, obejmującej działy: produkcji, 

utrzymania ruchu, jakości, zakupów, R&D oraz IT. 

 W niniejszym podrozdziale przedstawiono środowisko wdrożeniowe systemu, obejmujące aspekty 

techniczne, organizacyjne oraz jakościowe, które determinują przebieg dalszych prac badawczo-

wdrożeniowych. Przede wszystkim przedstawiono proces, który będzie nadzorowany, infrastrukturę 

linii technologicznej, identyfikację barier technicznych i organizacyjnych, a także analizę danych 

historycznych obejmujących awarie, zakłócenia i reklamacje, które pozwoliły ukazać skalę i wagę 

problemów występujących w procesie konfekcjonowania. Zebrane informacje stanowiły punkt 

odniesienia dla opracowania koncepcji oraz architektury systemu. 

Rysunek 3.1. Zakład produkcyjny Foodmakers Sp. z o.o. (Grupa Mróz S.A.) (dane udostępnione przez 

przedsiębiorstwo). 
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 Zakład dysponuje trzema halami typu „cleanroom”, w których zlokalizowane są cztery linie 

konfekcjonowania produktów typu „convenience”. Obiektem badań była jedna z linii technologicznych 

wybrana ze względu na reprezentatywność procesu oraz wcześniejsze występowanie problemów 

jakościowych. Rysunek 3.2 przedstawia schemat organizacji przepływów, obrazujący organizację ruchu 

personelu produkcji a także kierunki przemieszczania surowców, opakowań, gotowych wyrobów  

i odpadów wzdłuż linii produkcyjnych. 

Rysunek 3.2. Schemat organizacji przepływów w hali produkcyjnej (dane udostępnione przez przedsiębiorstwo).
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 Schemat przebiegu procesu produkcyjno-logistycznego w badanym zakładzie, obejmujący przyjęcie 

surowców, magazynowanie, konfekcjonowanie oraz dystrybucję, przedstawiono na Rysunku 3.3. 

.  

Rysunek 3.3. Schemat przebiegu procesu produkcyjno-logistycznego w zakładzie – stan wyjściowy (2021 r.) 

(dane udostępnione przez przedsiębiorstwo). 
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 W momencie rozpoczęcia prac badawczo-wdrożeniowych linia produkcyjna była wyposażona  

w zestaw maszyn i stanowisk technologicznych tworzących kompletny układ do realizacji procesu 

konfekcjonowania (Rysunek 3.4). Numeracja przedstawiona na rysunku odpowiada kolejno opisanym 

niżej stanowiskom oraz urządzeniom. 

Rysunek 3.4. Schemat linii konfekcjonowania z oznaczeniem urządzeń i stanowisk (opracowanie własne na 

podstawie danych udostępnionych przez przedsiębiorstwo). 

1. Półautomatyczna maszyna podająca puste opakowania na linię produkcyjną, 

2. Półautomatyczny dozownik sosów, 

3. Wagi i miarki tradycyjne, stosowane do ręcznego naważania składników, 

4. Automatyczna maszyna pakująca typu tray sealer, pracująca w technologii MAP, 

5. Automatyczne urządzenie drukująco-etykietujące, służące do nanoszenia danych 

identyfikacyjnych na opakowania, 

6. Stanowiska kontrolne przeznaczone do badań zawartości tlenu w opakowaniach oraz prowadzenia 

dokumentacji jakościowej, 

7. Detektor metali pełniący funkcję końcowej kontroli bezpieczeństwa wyrobu. 

 Wszystkie elementy linii były zintegrowane w jeden układ transportowy, zapewniający ciągłość 

przepływu opakowań i wyrobów pomiędzy poszczególnymi stanowiskami. W stanie wyjściowym część 

operacji realizowano manualnie, a dane procesowe nie były gromadzone w sposób zcentralizowany. 

Wstępna analiza przebiegu procesu pozwoliła wskazać trzy operacje o szczególnym znaczeniu dla 

jakości i stabilności produkcji: naważanie, pakowanie i etykietowanie. Zostały one potraktowane jako 

obszary priorytetowe do dalszej weryfikacji w ramach analizy danych historycznych. 

 W analizowanym okresie (2021-2022) istotnym aspektem środowiska wdrożeniowego, były także 

uwarunkowania techniczne i organizacyjne. Po stronie technicznej do najważniejszych czynników 

należały ograniczony dostęp do danych procesowych oraz brak otwartych interfejsów komunikacyjnych 

w części maszyn, w tym w szczególności w maszynie pakującej typu tray sealer. W zakładzie 

funkcjonował system klasy ERP, stosowany głównie w obszarach administracyjnych, jednak nie był on 
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powiązany z poziomem produkcyjnym. Dodatkowym ograniczeniem była infrastruktura serwerowa, 

która nie pozwalała na pełną archiwizację większych wolumenów danych procesowych. Po stronie 

organizacyjnej wyzwaniem był niedobór specjalistów z obszaru automatyki, IT i utrzymania ruchu, co 

skutkowało koniecznością angażowania zespołów operacyjnych oraz korzystania ze wsparcia firm 

zewnętrznych w zakresie bardziej zaawansowanych działań. Na przebieg prac badawczo-

wdrożeniowych wpływały także czynniki zewnętrzne, w tym pandemia COVID-19, która spowodowała 

czasowe wstrzymanie eksploatacji linii. 

 Kolejnym elementem diagnozy środowiska wdrożeniowego była analiza danych historycznych 

dotyczących awarii oraz reklamacji (wewnętrznych i zewnętrznych). Zestawienia z lat 2021–2022 

pozwoliły zidentyfikować powtarzalne zdarzenia techniczne oraz uchybienia organizacyjne, 

odczuwalne w trzech kluczowych obszarach operacyjnych. Poniżej (Tabela 3.1) zebrano najczęściej 

występujące przypadki wraz z opisem skutków. 

Tabela 3.1. Najczęściej występujące zdarzenia techniczne w kluczowych operacjach procesu (2021–2022). 

Lp. Operacja Rodzaj zdarzenia Opis skutków 

1 Naważanie 
Rozszczelnienie układu 

dozującego 

Niestabilna dawka surowca, 

konieczność dodatkowej kontroli 

masy 

2 Etykietowanie 

Spadek jakości nadruku etykiet 

(daty przydatności, numeru 

partii oraz kodów kreskowych) 

Spadek czytelności nadruku daty 

przydatności; okresowo nieczytelne 

kody kreskowe, utrudnienia w 

identyfikacji numerów partii 

3 

Pakowanie 

Uszkodzenie czujników 

położenia/obecności opakowań 

w maszynie pakującej 

Przestoje linii w wyniku wyłączenia 

maszyny 

4 

Uszkodzenie czujników 

temperatury płyt grzewczych 

maszyny pakującej typu tray 

sealer 
 

Niejednorodne zgrzeiny, powstawanie 

nieszczelności, opakowania z 

podwyższoną zawartością tlenu 

5 
Nadmierne podciśnienie w 

komorze pakującej 

Deformacje opakowań, nieszczelności 

i zanieczyszczenia w obszarze 

zgrzeiny 

6 
Niesynchronizowane prędkości 

przenośników 

Kolizja produktów i zakłócenia 

przepływu w procesie 

Opracowanie własne na podstawie danych udostępnionych przez przedsiębiorstwo. 

 Obok zdarzeń technicznych istotnym źródłem problemów w badanym środowisku wdrożeniowym 

były także zakłócenia organizacyjne oraz błędy wynikające z obsługi linii produkcyjnej. Obejmowały 

one np. błędne nastawy maszyn, nieprawidłowe przezbrojenia, problemy z konfiguracją urządzeń 

kontrolnych, zakłócenia w przepływie materiałów oraz błędy ewidencji. Zestawienie najczęściej 

rejestrowanych zakłóceń w latach 2021–2022 przedstawiono w Tabeli 3.2. 
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Tabela 3.2. Zakłócenia organizacyjne w kluczowych operacjach procesu (2021–2022). 

Lp. Operacja Rodzaj zakłócenia Opis przyczyn Skutki 

1 Naważanie 

Błędy związane z 

ustawieniami 

dozowników i wag 

Niewłaściwe przezbrojenie 

i nieprawidłowe nastawy 

parametrów dozowania. 

Odchylenia masy 

jednostkowej, 

konieczność 

dodatkowych kontroli. 

2 

Etykietowanie  

Niewłaściwa obsługa 

aplikatora etykiet i 

niestabilność HMI 

Trudności w obsłudze 

panelu operatorskiego oraz 

okresowa niestabilność 

interfejsu HMI. 

Brak nadruku kodów i 

danych, przerwy w 

etykietowaniu, ryzyko 

błędnej identyfikacji 

partii. 

3 
Błędne identyfikatory 

partii i daty trwałości 

Nieprawidłowa 

konfiguracja pól na HMI 

mimo prawidłowego planu 

produkcji; brak kontroli 

dwustopniowej. 

Partie z błędnym 

numerem i terminem 

trwałości, wykrycie 

dopiero na etapie 

zwolnienia 

jakościowego. 

4 

Pakowanie 

Niestabilność procesu 

MAP po zmianach 

parametrów 

Samodzielna zmiana 

temperatury zgrzewania i 

parametrów atmosfery 

ochronnej; 

niewystarczająca czystość 

tacek. 

Deformacje opakowań, 

zanieczyszczenia w 

obszarze zgrzeiny, 

zmienna siła otwarcia 

opakowania, 

konieczność 

przepakowania partii. 

5 

Rozbieżności bilansu 

produkcyjnego przy 

zamknięciu partii 

Błędy ewidencji i 

sumowania przy 

zakończeniu serii; brak 

integracji liczników i 

rejestru partii. 

Nadwyżki lub braki 

względem planu, 

negatywna ocena 

klienta w przypadku 

braków. 
Opracowanie własne na podstawie danych udostępnionych przez przedsiębiorstwo. 

 Kolejną grupę problemów stanowiły reklamacje jakościowe, zgłaszane zarówno przez dział kontroli 

wewnętrznej, jak i przez odbiorców końcowych (zewnętrznych). Najczęściej powtarzające się typy 

reklamacji przyporządkowane do operacji realizowanych w procesie konfekcjonowania przedstawiono 

w Tabeli 3.3. 

Tabela 3.3. Najczęściej występujące reklamacje jakościowe (2021–2022). 

Lp. Operacja 
Rodzaj 

reklamacji 
Opis przyczyn Skutki 

1 Naważanie 
Niepełna 

zawartość wyrobu 

Brak jednego lub kilku 

składników w daniu 

gotowym lub zaniżona 

wartość względem 

specyfikacji. 

Reklamacje konsumenckie 

kierowane do sieci 

handlowych; dokumentacja 

zdjęciowa i oficjalne numery 

spraw. 
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2 Pakowanie 

Szczelność i 

jakość 

opakowania 

Nieszczelne opakowania 

powodujące zmiany 

organoleptyczne; zjawisko 

bombażu; wady zapachu i 

smaku przy zachowaniu 

terminu i warunków 

chłodniczych. 

Wykrycie na etapie 

zwolnienia produktu, 

reklamacje klientów; część 

wyrobów zwrócona, ryzyko 

pogorszenia wizerunku 

marki. 

3 Etykietowanie 
Znakowanie i 

identyfikacja 

Brak nadruku terminu 

przydatności do spożycia i 

numeru partii; błędne lub 

nieczytelne kody (EAN-13, 

GS1); nadruk przesunięty 

na obszar o niskim 

kontraście. 

Reklamacje od odbiorców 

hurtowych i detalicznych; w 

jednym przypadku wycofanie 

partii z obrotu przez centrum 

logistyczne. 

Opracowanie własne na podstawie danych udostępnionych przez przedsiębiorstwo. 

 Skala reklamacji była znacząca. W 2021 roku ogólny wskaźnik reklamacji w przedsiębiorstwie, 

obejmujących zarówno obszary produkcji, logistyki, magazynowania, jak i dystrybucji, wyniósł 0,16% 

przy założonym celu 0,01%, co oznacza przekroczenie wartości docelowej szesnastokrotnie. W roku 

2022, pomimo podjęcia działań doskonalących, wskaźnik spadł jedynie do 0,03%, pozostając 

trzykrotnie powyżej limitu. 

 Na potrzeby szczegółowej oceny stanu wyjściowego procesu konfekcjonowania wykorzystano 

natomiast wskaźnik DPMO (Defects Per Million Opportunities), definiowany jako liczbę defektów 

na milion szans, który pozwalał na precyzyjne monitorowanie jakości w poszczególnych operacjach 

procesu. 

 W ramach klasyfikacji źródeł niezgodności wyróżniono trzy główne kategorie DPMO: 

• DPMO – masa: związane z operacją naważania, 

• DPMO – etykieta: związane z operacją etykietowania, 

• DPMO – opakowanie: związane z operacją pakowania 

 Analiza wykazała, że największy udział w ogólnym wskaźniku DPMO miały niezgodności 

związane z pakowaniem oraz etykietowaniem, przy mniejszym, choć nadal istotnym, udziale 

niezgodności w obszarze naważania (Tabela 3.4). Zidentyfikowane defekty skutkowały nie tylko 

stratami surowcowymi, lecz także konsekwencjami organizacyjnymi i ekonomicznymi, takimi jak 

zwiększone koszty kontroli wewnętrznej, dodatkowe audyty zewnętrzne czy konieczność realizacji 

działań korygujących. 

Tabela 3.4. Zestawienie wskaźników DPMO w latach 2021–2022. 

Kategoria DPMO 2021 2022 

DPMO - masa 7,6 12,6 

DPMO - etykieta 25,8 15,6 

DPMO - opakowanie 27,4 37,9 

DPMO - pozostałe 19,8 13,6 

DPMO - ogółem 80,6 79,7 

Opracowanie własne na podstawie danych udostępnionych przez przedsiębiorstwo.  
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 Kolejnym elementem diagnozy stanu wyjściowego była ocena podstawowych wskaźników 

operacyjnych, w tym wydajności procesu oraz możliwości wyznaczenia wskaźnika OEE (Overall 

Equipment Effectiveness). W roku 2021 brakowało jednak pełnej cyfrowej rejestracji parametrów, co 

uniemożliwiało obliczanie OEE w pełnym zakresie. Dopiero od 2022 roku, wraz z uruchomieniem 

systemów rejestrujących dane oraz wag kontrolnych, możliwe stało się systematyczne monitorowanie 

liczby jednostek zapakowanych w ujęciu godzinowym. Średnia wydajność produkcyjna w 2022 roku 

wyniosła 13,44 szt./min, a uzyskane dane posłużyły do dalszego wyznaczania składowych wskaźnika 

OEE, który ostatecznie w 2022 r. osiągnął 51,37%. We wcześniejszym okresie ocena organizacyjna 

opierała się także na wskaźniku wydajności pracy, rozumianym jako liczba wyrobów gotowych 

przypadających na jedną roboczogodzinę pracy operatorów. Wskaźnik ten wyniósł odpowiednio 60,4 

szt./ roboczogodzin (rg.) w 2021 roku oraz 63,5 szt./rg. w 2022 roku. Zestawienie awarii technicznych, 

zakłóceń organizacyjnych oraz reklamacji jakościowych potwierdziło, że największe ryzyko dla 

stabilności procesu i jakości wyrobu skupia się właśnie w operacjach naważania, pakowania  

i etykietowania. Dlatego to one zostały uznane za operacje krytyczne, które w kolejnych etapach pracy 

stanowią podstawę identyfikacji problemów i projektowania koncepcji systemu nadzorowania. 

 Proces konfekcjonowania w stanie wyjściowym charakteryzował się dużym udziałem pracy 

manualnej oraz ograniczoną cyfrową rejestracją danych. Występowała powtarzalność awarii 

urządzeń i błędów obsługowych, a także wysoki poziom reklamacji jakościowych, szczególnie w 

obszarze etykietowania i szczelności opakowań. Dodatkowym ograniczeniem były utrudnione 

możliwości pełnej oceny efektywności (OEE) wynikające z braku systematycznej akwizycji danych. 

Całość dopełniała zmienność i niska powtarzalność procesu, które wpływały negatywnie na 

stabilność parametrów produkcji. 

3.2. Identyfikacja problemów występujących w analizowanym procesie 

 Na etapie opracowywania koncepcji inteligentnego systemu nadzorowania procesu 

konfekcjonowania konieczne było przeprowadzenie szczegółowej identyfikacji niezgodności w 

kluczowych operacjach tego procesu. W badanym środowisku produkcyjnym proces konfekcjonowania 

obejmuje trzy podstawowe operacje: naważanie, pakowanie oraz etykietowanie. Analiza została oparta 

na dokumentacji reklamacji zewnętrznych (od klientów) oraz wewnętrznych (wynikających z bieżącej 

kontroli jakości), a także uzupełniona wynikami przeglądu środowiska wdrożeniowego, obejmującego 

obserwacje procesów oraz analizę dostępnej infrastruktury technicznej. Dzięki temu możliwa była 

identyfikacja zarówno formalnie rejestrowanych niezgodności, jak i problemów występujących  

w praktyce eksploatacyjnej linii konfekcjonowania. Na tej podstawie określono trzy obszary procesu,  

w których zidentyfikowano istotne problemy: 

1. Operacja naważania obejmuje przygotowanie kilku różnych składników (jednego, dwóch, trzech lub 

więcej), dla których kluczowe jest zachowanie zadanej masy w określonej tolerancji. Każdy składnik 

musi być naważony precyzyjnie, ponieważ zarówno masa jednostkowa każdego składnika, jak i masa 
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całkowita gotowego opakowania (wszystkich składników) wpływa na zgodność wyrobu  

z wymaganiami specyfikacji.  

Dla operacji naważania zidentyfikowano następujące problemy: 

• Niedoważenia – masa netto porcji poniżej wartości zadanej w specyfikacji, 

• Przeważenia – przekroczenia wartości nominalnej, 

• Braki składnika – całkowite pominięcie jednego lub kilku składników. 

• Niewłaściwe proporcje składników – sytuacje, w których łączna masa opakowania spełnia 

wymagania specyfikacji, lecz relacje pomiędzy poszczególnymi składnikami są zaburzone (np. 

jeden składnik jest przeważony, a inny niedoważony). 

2. Dla operacji pakowania wyróżniono dwie kategorie wad związanych z nieszczelnościami 

opakowań: 

• Nieszczelności możliwe do identyfikacji metodami wizyjnymi, nazwane na potrzeby tej pracy 

„Nieszczelnościami I”. Obejmują one w szczególności: zabrudzenia w obszarze zgrzeiny, 

uszkodzenia mechaniczne (pęknięcia, perforacje, deformacje), wady materiałowe, takie jak 

rozwarstwienia folii, nieciągłości lub widoczne mikropęknięcia. 

• Nieszczelności niemożliwe do identyfikacji metodami wizyjnymi, nazwane dalej 

„Nieszczelnościami II”. Dotyczą one mikronieszczelności, których weryfikacja możliwa jest 

jedynie przy użyciu metod pośrednich. Wiarygodne rozstrzygnięcie możliwe jest na drodze badań 

niszczących, takich jak pomiar zawartości tlenu wewnątrz opakowania. 

3. W zakresie etykietowania zidentyfikowano następujące problemy: 

• brak etykiety – całkowity brak naniesionej etykiety na opakowaniu, 

• błędy treści – niepełne, błędne lub nieaktualne dane (np. termin przydatności, numer partii), 

• niska jakość nadruku – słaba kontrastowość, rozmazania, deformacje czcionek, 

• nieczytelne lub błędne kody – kody niezgodne ze specyfikacją, o obniżonej klasie ISO/IEC, 

utrudniające automatyczną identyfikację i śledzenie partii. 

 Zestawienie operacji procesu wraz z przypisanymi im problemami przedstawiono na Rysunku 3.5. 
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Rysunek 3.5. Przebieg procesu konfekcjonowania w badanym środowisku oraz zidentyfikowane niezgodności 

(opracowanie własne).  

 Konsekwencją powyższych niezgodności są reklamacje klientów, straty materiałowe oraz 

obniżenie efektywności wykorzystania linii produkcyjnej. W przypadku operacji naważania skutki 

dotyczą przede wszystkim ryzyka naruszenia wymagań prawnych w zakresie masy porcji 

poszczególnych składników oraz masy całkowitej wyrobu gotowego co bezpośrednio wpływa na 

zgodność z recepturą i zapewnieniem specyfikacji produktu końcowego. Dodatkowo pojawiają się 

koszty wynikające z przeważeń. W obszarze pakowania nieszczelności opakowań prowadzą do 

obniżenia trwałości produktów, a w konsekwencji do strat ekonomicznych oraz ryzyka konieczności 

wycofania całych partii z rynku. Z kolei problemy w etykietowaniu skutkują utrudnieniem 

identyfikowalności partii, nieprawidłowym oznakowaniem terminów przydatności czy numerów 

partii, co generuje ryzyko błędów logistycznych oraz utraty zaufania klientów. Łącznie prowadzi to do 

pogorszenia charakterystyki jakościowej wyrobu rozumianej jako: 

• Dla naważania: spełnienie wymagań dotyczących masy poszczególnych składników oraz masy 

całkowitej wyrobu gotowego, 

• Dla pakowania: zapewnienie szczelności opakowania i utrzymanie odpowiedniej atmosfery 

ochronnej (zawartość tlenu < 1%), 

• Dla etykietowania: prawidłowe oznakowanie i pełna identyfikowalność wyrobu (czytelna treść 

etykiety, poprawny termin przydatności do spożycia, numer partii oraz kod). 

 Aby zaprojektować skuteczny system nadzorowania, sama identyfikacja problemów nie była 

wystarczająca. Konieczne stało się również określenie źródeł ich powstawania, co pozwoliło wskazać 

najważniejsze obszary wymagające wsparcia i nadzorowania. Analiza przyczyn przeprowadzona dla 

poszczególnych operacji procesu konfekcjonowania wykazała, że: 

1. W naważaniu podstawowym problemem są niedoważenia, przeważenia oraz braki składnika, a ich 

źródeł można upatrywać przede wszystkim w niedoskonałościach tradycyjnych metod 

naważania, opartych na ograniczonej automatyzacji i kontroli, a także w braku stałego 

monitoringu parametrów procesu. Do przyczyn należy zaliczyć również błędy ludzkie 
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wynikające z obsługi urządzeń, rozkalibrowanie wag oraz niewystarczającą stabilność urządzeń w 

długotrwałej eksploatacji. 

• W pakowaniu kluczowym problemem pozostaje nieszczelność opakowań („Nieszczelności I” oraz 

„Nieszczelności II”). Ich powstawanie wiąże się przede wszystkim z fluktuacjami krytycznych 

parametrów procesu pakowania. Oznacza to, że jeden lub kilka parametrów procesu może ulegać 

okresowym odchyleniom. Wzrosty, spadki bądź przekroczenia wartości granicznych tych 

zmiennych prowadzą do zaburzenia stabilności procesu, a w konsekwencji do utraty integralności 

opakowania. Źródeł problemu można upatrywać zarówno w niewłaściwym przebiegu procesu 

technologicznego, jak i w czynnikach organizacyjno-eksploatacyjnych. Do typowych przyczyn 

zaliczają się błędy w doborze programów czy nastaw, brak odpowiedniej reakcji na przekroczenia 

limitów granicznych parametrów procesu, a także awarie lub uszkodzenia elementów maszyn 

pakujących, które bezpośrednio wpływają na szczelność opakowania. Dodatkowym problemem 

jest niewykrywanie nieszczelności wynikających z pęknięć, wad materiału opakowaniowego czy 

zabrudzeń w obszarze zgrzeiny, które często pozostają poza zasięgiem standardowych metod 

kontroli jakości. 

• W etykietowaniu istotnym problemem są braki etykiet, błędy w ich treści, niska jakość nadruku  

i nieczytelne lub błędne kody. Przyczyny tych niezgodności obejmują zarówno nieprawidłowości 

w procesie drukowania i nanoszenia etykiet, jak i niewłaściwą kalibrację urządzeń 

kontrolnych. Dodatkowo znaczący wpływ ma postępujące zużycie elementów 

eksploatacyjnych, w szczególności głowic drukujących, które prowadzi do pogarszania jakości 

zadruku i spadku klasy kodów kreskowych. Ważnym źródłem problemów są także błędy ludzkie 

na etapie programowania danych, w tym wprowadzanie niepoprawnych terminów trwałości, 

numerów partii czy kodów identyfikacyjnych. 

3.3. Koncepcja systemu 

 Dla rozwiązania problemów zidentyfikowanych w kluczowych operacjach procesu 

konfekcjonowania zaproponowano opracowanie i wdrożenie dedykowanego systemu jego 

nadzorowania. 

 Po przeanalizowaniu cech środowiska wdrożeniowego i identyfikacji występujących niesprawności 

procesu stwierdzono, że system powinien w szczególności: 

1. Rejestrować i gromadzić dane procesowe w czasie rzeczywistym, obejmujące m.in. masę 

jednostkowych porcji, parametry przebiegu procesu pakowania oraz dane dotyczące etykietowania.  

2. Prowadzić ciągłą inspekcję wizyjną wyrobów, która powinna umożliwiać klasyfikację opakowań 

jako szczelnych lub obarczonych „nieszczelnościami I”, w tym także wykrywać uszkodzenia 

powierzchniowe oraz inne defekty. 

3. Nadzorować obecność etykiet i ich treści w celu weryfikacji kompletności, czytelności oraz 

poprawności treści. System powinien sygnalizować błędy w sposób natychmiastowy. 
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4. Realizować automatyczny odrzut wyrobów niespełniających określonych charakterystyk 

jakościowych, z jednoczesną rejestracją przyczyn podjętej decyzji. Proces odrzutu powinien być 

deterministyczny, w pełni zsynchronizowany z przepływem wyrobów na linii produkcyjnej. 

5. Dokonywać oceny ryzyka wystąpienia nieszczelności II z wykorzystaniem metod predykcyjnych 

i diagnostycznych.  

6. Zapewniać wizualizację, alarmowanie oraz raportowanie wskaźników efektywności, 

obejmujące bieżące monitorowanie parametrów procesu i wsparcie operatorów w podejmowaniu 

decyzji.  

Koncepcja systemu nadzorowania procesu konfekcjonowania została przedstawiona na Rysunku 3.6. 

Rysunek 3.6. Koncepcja systemu nadzorowania procesu konfekcjonowania wyrobów (opracowanie własne). 

 Na etapie koncepcji przyjęto, że, projektowany system będzie miał charakter warstwowy  

i modułowy. Biorąc pod uwagę przeprowadzone badania literaturowe, założono, że organizacyjnie 

system zostanie zbudowany z czterech warstw: 

• Warstwa akwizycji danych będzie stanowiła podstawę działania systemu. Będzie odpowiadała za 

pozyskiwanie pełnych i wiarygodnych informacji. Będą gromadzone sygnały z urządzeń 

pomiarowych i wykonawczych oraz obrazy z systemów wizyjnych, które umożliwią inspekcję 

strumienia wyrobów. Każdy zapis otrzyma znacznik czasu i jednoznaczne powiązanie z partią lub 

serią, co zapewni identyfikowalność i pozwoli odtworzyć kontekst powstania niezgodności na 

poziomie konkretnej operacji procesu. 

• Warstwa analityczna będzie odpowiadała za porządkowanie i przetwarzanie danych w celu 

nadania im wartości analitycznej. Obejmie to filtrowanie i normalizację, synchronizację źródeł oraz 

wykrywanie odchyleń od wartości zadanych. W warstwie tej, w razie potrzeby zostaną 

zaimplementowane algorytmy analizy obrazu i metody wspomagające, a także modele predykcyjne 

i diagnostyczne. 
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• Warstwa decyzyjna będzie konsolidowała wyniki analiz i przekształcała je w jednoznaczne 

decyzje jakościowe. Będzie to obejmowało decyzje OK lub NOK przekazywane do układu odrzutu 

oraz wskazania dodatkowych działań, w tym kierowanie wyrobów do badań niszczących w 

przypadku podwyższonego ryzyka mikronieszczelności. Będą również generowane komunikaty  

o przekroczeniach wartości granicznych oraz sygnały diagnostyczne dla służb utrzymania ruchu. 

Warstwa ta domknie pętlę nadzoru i zapewni deterministyczną reakcję systemu na wykryte 

niezgodności. 

• Warstwa wizualizacyjna będzie udostępniała operatorom informacje o stanie procesu, wynikach 

analiz i przyczynach decyzji. Obejmie dedykowane interfejsy HMI, mechanizmy alarmowania oraz 

raportowanie wskaźników efektywności, w tym mierników jakości i produktywności. Czytelna 

prezentacja danych będzie wspierała podejmowanie działań korygujących, skracała czas reakcji  

i ograniczała ryzyko błędów ludzkich.  

 Funkcjonalnie system podzielono na moduły, ściśle powiązane z zidentyfikowanymi 

operacjami procesu konfekcjonowania i zidentyfikowanymi w nich problemami. Dzięki temu każda 

operacja jak naważanie, pakowanie i etykietowanie zostaną wsparte przez dedykowane moduły, których 

zadaniem będzie zapobieganie, ograniczanie lub eliminacja poszczególnych zidentyfikowanych 

niezgodności. Korzyścią z takiego założenia jest jasny podział funkcji i możliwość niezależnego 

rozwijania i etapowego wdrażania modułów, a przez to ograniczenie ryzyka wdrożeniowego  

i uzyskiwanie korzyści już na wczesnych etapach implementacji. 

 Zaproponowano pięć modułów funkcjonalnych: 

1. Moduł nadzorowania masy porcji – będzie powiązany z problemem niedoważeń i przeważeń; 

będzie korzystał z warstwy akwizycji (pomiary masy z wag), analitycznej (algorytmy odchyleń), 

decyzyjnej (OK/NOK) i wizualizacyjnej (aplikacje HMI prezentujące wyniki pomiarów, alarmy 

oraz przyczyny decyzji). Ściśle powiązany będzie z operacją naważania. 

2. Moduł nadzorowania „nieszczelności I” – będzie powiązany nieszczelnościami możliwymi do 

identyfikacji metodami wizyjnymi; będzie korzystał z warstwy akwizycji (obrazy opakowań 

rejestrowane przez systemy wizyjne), analitycznej (algorytmy detekcji defektów), decyzyjnej 

(OK/NOK) i wizualizacyjnej (aplikacje HMI prezentujące obrazy defektów, wyniki klasyfikacji 

oraz komunikaty diagnostyczne dla operatora). Ściśle powiązany będzie z operacją pakowania. 

3. Moduł nadzorowania „nieszczelności II” – będzie powiązany z nieszczelnościami niewidocznymi 

wizualnie, niewykrywalnych metodami wizyjnymi; będzie korzystał z warstwy akwizycji 

(parametry procesu z czujników), analitycznej (modele predykcyjne), decyzyjnej (kwalifikacja do 

badań na zawartość tlenu lub decyzja OK/NOK) i wizualizacyjnej (aplikacje HMI udostępniające 

informacje diagnostyczne o stanie procesu i wskazania dotyczące ryzyka wystąpienia 

niezgodności). Ściśle powiązany będzie z operacją pakowania. 
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4. Moduł nadzorowania etykiet i ich treści – będzie powiązany z problemem braku etykiety, błędami 

ich treści, niska jakością nadruku oraz nieczytelnymi bądź błędnymi kodami; będzie korzystał  

z warstwy akwizycji (obrazy etykiet rejestrowane przez systemy wizyjne), analitycznej (algorytmy 

weryfikacji treści i jakości kodów), decyzyjnej (OK/NOK) i wizualizacyjnej (aplikacje HMI 

prezentujące wyniki weryfikacji, sygnalizujące błędy oraz generujące raporty dla operatora). Ściśle 

powiązany będzie z operacją etykietowania. 

5. Moduł nadzorowania odrzutu wyrobów niezgodnych – będzie powiązany z potrzebą fizycznej 

eliminacji wyrobów oznaczonych jako NOK; będzie korzystał z warstwy akwizycji (czujniki 

obecności, enkodery), decyzyjnej (impuls sterujący odrzutem) i wizualizacyjnej (statystyki NOK 

oraz komunikaty alarmowe dla operatora). Ściśle powiązany będzie z wszystkimi operacjami 

procesu konfekcjonowania, stanowiąc końcowy element pętli jakości. 

 W ramach prowadzonych badań literaturowych dokonano analizy rynku oraz stosowanych  

w praktyce przemysłowej metod i narzędzi rozwiązywania zidentyfikowanych problemów.  

W Tabelach 3.5 do 3.7 przedstawiono zestawienie rozwiązań możliwych do zastosowania. 

Tabela 3.5. Analiza rozważanych metod kontroli masy porcji (naważanie). 

Lp. 
Rozważana 

metoda/technologia 
Zalety Ograniczenia Ocena / decyzja 

1 

Wagi platformowe z 

cyfryzacją i 

komunikacją 

Wysoka dokładność 

pomiaru, pełna 

identyfikowalność 

danych (partia, 

operator), łatwa 

integracja z PLC i 

HMI, elastyczność dla 

różnych wyrobów 

Wyższy koszt w 

porównaniu z 

rozwiązaniami 

manualnymi 

Wybrane jako 

rozwiązanie 

docelowe 

2 

Dynamiczna waga 

kontrolna 

(checkweigher) 

Inspekcja całego 

strumienia 

produkcyjnego, szybka 

kwalifikacja OK/NOK 

Działa na wyrób 

gotowy, co zwiększa 

koszty odrzutów i nie 

eliminuje źródła 

ochyleń poszczególnych 

składników 

Rozwiązanie 

uzupełniające 

3 

Dozowanie 

objętościowe lub 

przepływowe dla 

składników 

płynnych 

Wysoka wydajność dla 

jednorodnych 

surowców płynnych, 

prosta automatyzacja 

Wrażliwość na lepkość i 

temperaturę, 

ograniczona 

identyfikowalność 

porcji, niewystarczające 

dla składników stałych 

Rozwiązanie 

uzupełniające (dla 

płynów) 

4 

Dozowniki 

grawimetryczne 

typu loss-in-weight 

Dobra stabilność dla 

materiałów sypkich, 

ciągła regulacja 

strumienia 

Ograniczona 

elastyczność przy 

porcjowaniu 

wieloskładnikowym, 

wymagająca adaptacja 

do otoczenia 

produkcyjnego 

Rozwiązanie 

uzupełniające 

Opracowanie własne. 
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Tabela 3.6. Analiza rozważanych metod kontroli szczelności opakowań (nieszczelności I). 

Lp. 

 

Rozważana 

metoda/technologia 
 

Zalety Ograniczenia Ocena / decyzja 

1 Kontrola tradycyjna 

Brak kosztów 

inwestycyjnych; 

możliwość 

natychmiastowej reakcji 

operatora 

Subiektywizm, niska 

powtarzalność, 

ograniczona skuteczność 

przy dużych wolumenach 

Odrzucone 

2 

Klasyczne systemy 

wizyjne (threshold, 

blob analysis) 

Automatyczna analiza 

obrazów, dostępność na 

rynku 

Niska odporność na 

zmienne oświetlenie i 

różnorodność defektów, 

duży odsetek fałszywych 

alarmów 

Rozwiązanie 

uzupełniające 

3 

Czujniki szczelności 

(ciśnieniowe, 

gazowe) 

Rozwiązania 

przemysłowe dostępne 

na rynku, stosowane do 

testów integralności 

opakowań 

Badania niszczące lub 

półniszczące, brak 

kontroli całego strumienia 

wyrobów 

Rozwiązanie 

uzupełniające 

4 

Systemy wizyjne z 

głębokim uczeniem 

(CNN) 

Automatyczna 

klasyfikacja w czasie 

rzeczywistym, 

odporność na 

zmienność obrazu, 

możliwość 

doskonalenia modeli 

poprzez uczenie 

Wyższy koszt wdrożenia, 

wymagane przygotowanie 

zbioru danych 

Wybrane jako 

rozwiązanie 

docelowe 

Opracowanie własne. 

Tabela 3.7. Analiza rozważanych metod kontroli mikronieszczelności (nieszczelności II). 

Lp. 
Rozważana metoda 

/ technologia 
Zalety Ograniczenia Ocena / decyzja 

1 

Badania niszczące 

(np. pomiar 

zawartości tlenu, 

testy wodne) 

Wysoka dokładność 

oznaczenia, powszechnie 

stosowane, zgodne z 

wymaganiami 

jakościowymi 

Wymagają zniszczenia 

próbki, duża 

czasochłonność, brak 

możliwości 100% 

kontroli strumienia 

Metoda 

referencyjna, 

stosowana jako 

uzupełniająca 

2 

Metody półniszczące 

(czujniki ciśnienia, 

spektroskopia 

gazowa) 

Dostępność komercyjna, 

częściowa 

automatyzacja, 

możliwość weryfikacji 

wybranych próbek 

Ograniczona 

powtarzalność, brak 

pełnej integracji inline, 

kosztowne przy dużych 

partiach 

Rozwiązanie 

uzupełniające 

3 

Modelowanie 

predykcyjne na 

danych procesowych 

 

Metoda nieniszcząca, 

możliwość 

prognozowania ryzyka 

mikronieszczelności w 

czasie rzeczywistym, 

redukcja liczby badań 

niszczących 

Wymaga cyfryzacji 

danych procesowych i 

walidacji modelu w 

warunkach 

przemysłowych 

Wybrane jako 

rozwiązanie 

docelowe 

Opracowanie własne. 
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W obszarze naważania stwierdzono, że w badanym środowisku wdrożeniowym, najbardziej 

adekwatnym a jednocześnie wystarczającym rozwiązaniem jest zastosowanie zaawansowanych wag 

platformowych, wyposażonych w funkcje cyfryzacji, komunikacji i integracji z systemem sterowania. 

Rozwiązanie powinno umożliwiać zarówno możliwość bieżącej kontroli parametrów, jak i generowania 

ustrukturyzowanych danych do analiz badawczych. 

Dla Nieszczelności I przeprowadzona analiza wykazała, że tradycyjna kontrola jest 

niewystarczająca ze względu na subiektywizm oceny i ograniczoną powtarzalność. Klasyczne systemy 

wizyjne, oparte na regułowych algorytmach progowych (thresholding, blob analysis), cechują się 

ograniczoną skutecznością w zmiennych warunkach procesu. Czujniki ciśnieniowe i gazowe 

umożliwiają ocenę integralności, lecz są metodami niszczącymi lub półniszczącymi, co ogranicza ich 

zastosowanie w kontroli w 100% strumienia wyrobów. Za najlepsze rozwiązanie, przyjęte do 

wdrożenia, uznano system wizyjny oparty na metodach głębokiego uczenia. Zasadniczą przewagą tego 

podejścia jest zdolność do automatycznej klasyfikacji defektów w czasie rzeczywistym, wysoka 

odporność na zmienne warunki oświetleniowe oraz różnorodność wad opakowań, a także potencjał 

dalszego doskonalenia poprzez trening sieci neuronowych na rozszerzanych zbiorach danych. Przyjęcie 

tego kierunku pozwala na eliminację subiektywnego czynnika ludzkiego i dostosowanie kontroli jakości 

do wymogów produkcji seryjnej. 

 Dla Nieszczelności II wyniki analizy wskazują, że stosowane dotąd metody niszczące  

i półniszczące, mimo swojej dokładności, nie pozwalają na pełny nadzór nad całym strumieniem 

produkcyjnym. Rozwiązaniem przyjętym do wdrożenia, umożliwiającym zarówno bieżącą kontrolę, 

jak i prognozowanie ryzyka niezgodności, jest podejście predykcyjne oparte na analizie danych 

procesowych. Stabilność procesu konfekcjonowania wyrobów w dużej mierze zależy od utrzymania 

kluczowych parametrów technologicznych w wąskich granicach tolerancji. Dlatego w module 

nadzorowania „nieszczelności II” zaproponowano zastosowanie modelu predykcji wystąpienia 

mikronieszczelności, bazujący na wartościach parametrów procesowych. 

 Z punktu widzenia wdrożenia systemu istotne jest, że metody przyjęte do rozwiązania obu 

problemów nieszczelności wymagają przeprowadzenia badań eksperymentalnych i modelowych, 

prowadzących do budowy odpowiednich modeli decyzyjnych. W szczególności wyboru rodzaju modelu 

i jego parametrów oraz przygotowaniu danych do trenowania, testowania i walidowania modelu. Biorąc 

pod uwagę wielość modeli możliwych do zastosowania (szczególnie w przypadku Nieszczelności II), 

konieczne jest również przeprowadzenie oceny uzyskanych modeli i wybór modelu najlepszego. 

 Dla pełnego uporządkowania toku pracy przygotowano zestawienie, które syntetycznie przedstawia 

powiązania między operacjami procesu, występującymi w nich problemami a odpowiadającymi im 

modułami oraz przypisanymi warstwami architektury. Zestawienie w Tabeli 3.8 prezentuje moduły w 

układzie: operacja procesu - problem – moduł – warstwa - funkcja. Dzięki temu, struktura modułowa 

stanowi bezpośrednią odpowiedź na problemy występujące w procesie konfekcjonowania,  

a jednocześnie w pełni realizuje założenia koncepcji i architektury systemu. 
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Tabela 3.8. Powiązanie modułów funkcjonalnych z operacjami procesu, problemami jakościowymi, warstwami 

architektury oraz funkcjami systemu. 

Powiązana 

operacja 

procesu 

Zidentyfikowany 

problem 
Moduł 

Powiązane warstwy 

systemu 
Funkcje modułu 

Naważanie 

Niedoważenia 

Przeważenia 

Braki składnika  

Nadzorowanie 

masy porcji 

Akwizycji (wagi), 

Analityczna (algorytmy 

odchyleń), Decyzyjna 

(OK/NOK), 

Wizualizacyjna 

Rejestracja i 

analiza danych 

procesowych; 

sygnalizacja 

błędów 

Pakowanie 

Nieszczelności 

możliwe do 

identyfikacji 

metodami 

wizyjnymi 

Nadzorowanie 

„nieszczelności 

I” 

Akwizycji (systemy 

wizyjne), Analityczna 

(algorytmy detekcji 

defektów), Decyzyjna 

(OK/NOK), 

Wizualizacyjna 

Inspekcja wizyjna 

100% wyrobów; 

automatyczne 

wykrywanie 

defektów 

Nieszczelności 

niemożliwe do 

identyfikacji 

metodami 

wizyjnymi 

Nadzorowanie 

„nieszczelności 

II” 

Akwizycji (czujniki 

procesowe), Analityczna 

(modele predykcyjne), 

Decyzyjna (kwalifikacja 

do badań 

niszczących/OK-NOK), 

Wizualizacyjna 

Predykcja ryzyka 

nieszczelności; 

redukcja badań na 

zawartość tlenu 

Etykietowanie 

Brak etykiety, 

błędy treści, 

niska jakość 

nadruku, 

nieczytelne lub 

błędne kody 

Nadzorowanie 

etykiet i ich 

treści 

Akwizycji (systemy 

wizyjne), Analityczna 

(algorytmy weryfikacji 

treści i jakości kodów), 

Decyzyjna (OK/NOK), 

Wizualizacyjna 

Analiza etykiet i 

kodów; blokada 

przekazywania 

wyrobów z 

błędami 

Wszystkie 

operacje 

Konieczność 

fizycznej 

eliminacji 

wyrobów NOK 

Nadzorowanie 

odrzutu 

wyrobów 

niezgodnych 

Akwizycji (czujniki 

obecności, enkodery), 

Decyzyjna (impuls 

sterujący odrzutem), 

Wizualizacyjna 

Automatyczny 

odrzut wyrobów 

NOK; rejestracja 

przyczyn decyzji 

Opracowanie własne. 

 Zaproponowana architektura wraz z przypisanymi modułami funkcjonalnymi tworzy spójny system 

nadzorowania, który bezpośrednio odpowiada na zidentyfikowane problemy procesu 

konfekcjonowania. Struktura warstwowa zapewnia przejrzyste rozdzielenie zadań, natomiast modułowa 

budowa umożliwia powiązanie każdej operacji z odpowiadającym jej mechanizmem nadzoru. Schemat 

architektury systemu, obrazujący przepływ danych pomiędzy warstwami przedstawiono na Rysunku 

3.7.
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Rysunek 3.7. Architektura warstwowa inteligentnego systemu nadzorowania procesu konfekcjonowania wyrobów (opracowanie własne).
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4. Budowa inteligentnego systemu nadzorowania procesu konfekcjonowania 

wyrobów 

 Budowę inteligentnego systemu nadzorowania należy rozumieć jako proces obejmujący zarówno 

projektowanie, jak i wdrażanie rozwiązań w środowisku przemysłowym. Poszczególne moduły systemu 

były realizowane w określonej kolejności począwszy od pierwszych elementów i stopniowo rozszerzane 

o kolejne funkcje. Nie zawsze jednak możliwe było zachowanie pełnej sekwencji działań. Wiele prac 

prowadzono równolegle, a uzyskiwane wyniki powodowały konieczność powrotu do wcześniej 

opracowanych fragmentów systemu, ich modyfikacji i doskonalenia. Wynikało to zarówno z charakteru 

badań wdrożeniowych, jak i z potrzeby bieżącego dostosowywania rozwiązań do uwarunkowań 

technicznych badanego zakładu. 

 Tak rozumiana budowa obejmowała przełożenie założeń koncepcyjnych i architektonicznych na 

rozwiązania modułowe, ich integrację w czterowarstwowej strukturze systemu oraz weryfikację 

funkcjonalności w warunkach przemysłowych. Efektem było powstanie spójnego układu, który z jednej 

strony odpowiadał na potrzeby operacyjne zakładu poprzez monitorowanie i podejmowanie decyzji 

jakościowych w czasie rzeczywistym, a z drugiej tworzył bazę badawczą dostarczającą 

ustrukturyzowanych danych do analiz, modelowania i walidacji. W dalszej części rozdziału 

przedstawiono poszczególne moduły wraz z ich rolą w systemie, przypisanymi warstwami architektury 

oraz powiązanymi modelami analitycznymi. 

4.1. Moduł nadzorowania masy porcji 

Na etapie koncepcji przyjęto, że do budowy tego modułu wykorzystane zostaną zaawansowane 

wagi platformowe, wyposażone w funkcje cyfryzacji, komunikacji i integracji z systemem sterowania. 

Rozwiązanie powinno umożliwiać zarówno możliwość bieżącej kontroli parametrów, jak i generowania 

ustrukturyzowanych danych do analiz badawczych. 

Od wybranego rozwiązania oczekiwano, że zapewni ono: 

• ograniczenie udziału czynnika ludzkiego poprzez odejście od tradycyjnych metod naważania, 

• bieżący monitoring masy w czasie rzeczywistym, umożliwiający natychmiastową reakcję na 

odchylenia, 

• wsparcie operatora poprzez sygnalizację wizualną w przypadku przekroczeń progów tolerancji, 

• pełną identyfikowalność pomiarów poprzez przypisanie wyników do partii i operatora, 

• archiwizację danych w formie cyfrowej, umożliwiającą prowadzenie analiz statystycznych, 

budowę wskaźników (m.in. DPMO–masa) oraz walidację działania systemu w dłuższej 

perspektywie, 

• spójność i zgodność z przyjętą architekturą systemu. 

  



  

67 

 

 Moduł został osadzony w czterowarstwowej architekturze systemu: 

1. Dla warstwy akwizycji danych stanowiska wagowe wyposażono w precyzyjne platformy 

pomiarowe ze stali kwasoodpornej o dokładności 1 g, dostosowane do pracy w warunkach 

przemysłowych. Zasadniczym elementem tych urządzeń były belki tensometryczne z czujnikami 

tensometrycznymi które umożliwiały przekształcenie odkształceń mechanicznych w sygnały 

elektryczne i ich dalsze przetwarzanie w układzie sterowania. Każde stanowisko zostało 

zintegrowane z 15-calowym panelem operatorskim HMI w obudowie IP67, co zapewniało 

odporność na warunki środowiska produkcyjnego (Rysunek 4.1). Rozmieszczenie wag wzdłuż linii 

umożliwiało kontrolę masy kluczowych składników oraz jednoznaczne przypisanie wyników 

pomiarów do operatora i partii produkcyjnej. Dane z wag były automatycznie rejestrowane  

w aplikacji lokalnej i przekazywane do serwera FTP, co gwarantowało ciągłość zapisu i pełną 

identyfikowalność. Każdy pomiar archiwizowano wraz z numerem partii, identyfikatorem 

operatora, czasem i wynikiem ważenia, co tworzyło kompletną bazę danych źródłowych. Aby 

zapewnić wiarygodność wyników i spójność pomiarową, urządzenia poddawano regularnej 

kalibracji z wykorzystaniem wzorcowanych odważników referencyjnych, zgodnych  

z wymaganiami metrologicznymi i prawnymi. 

Rysunek 4.1. Stanowisko wagowe z panelem operatorskim HMI (opracowanie własne na podstawie danych 

udostępnionych przez przedsiębiorstwo). 

2. W warstwie analitycznej realizowano porównanie wyników pomiarowych z wartościami 

normatywnymi (M₀) oraz granicami tolerancji (T₋, T₊). Dane były przetwarzane w czasie 

rzeczywistym, umożliwiając tworzenie histogramów rozkładu mas porcji, wykresów trendów oraz 

analizę zmienności. Opracowane algorytmy pozwalały na agregację wyników w ujęciu partii  

i zmian produkcyjnych, a także na wyznaczanie wskaźników jakościowych, takich jak DPMO – 

masa. Dzięki temu moduł nie tylko wspierał kontrolę operacyjną, ale również pełnił rolę źródła 

danych badawczych do oceny stabilności procesu i walidacji systemu. 
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3. Na podstawie obliczeń z warstwy analitycznej stosowano trzystopniową logikę kwalifikacji 

wyników (Rysunek 4.2): 

o zielona – masa porcji w zakresie tolerancji, 

o żółta – wynik bliski granicy tolerancji, wskazujący na potrzebę korekty, 

o czerwona – wynik poza zakresem, oznaczający kwalifikację NOK i konieczność odrzutu. 

Logika decyzyjna została zaimplementowana w sposób deterministyczny, a decyzje były 

rejestrowane i przekazywane do modułu odrzutu wyrobów niezgodnych. Rozwiązanie to ograniczało 

ryzyko błędnej interpretacji przez operatora i zapewniało spójność ocen w całym procesie. 

Rysunek 4.2. Logika modułu nadzorowania masy porcji (opracowanie własne). 

4. Integralną część modułu stanowiła warstwa wizualizacyjna wyposażona w dedykowaną aplikację 

operatorską. Interfejs aplikacji umożliwiał konfigurację parametrów normatywnych, przypisywanie 

zadań do partii i operatorów oraz bieżące monitorowanie procesu naważania. Na Rysunku 4.3 

przedstawiono ekran konfiguracyjny oraz panel monitoringu, na którym operator mógł śledzić 

wyniki pomiarów w czasie rzeczywistym wraz z sygnalizacją kolorystyczną progów tolerancji. 

Rysunek 4.3. Interfejs aplikacji: konfiguracja i monitoring operacji naważania (opracowanie własne na podstawie 

danych udostępnionych przez przedsiębiorstwo). 
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 Kolejny widok aplikacji, zaprezentowany na Rysunku 4.4, przedstawia kartotekę towarów  

i surowców. Funkcjonalność ta umożliwiała jednoznaczną identyfikację używanych komponentów, ich 

parametrów normatywnych oraz przypisanie do konkretnej partii produkcyjnej. 

Rysunek 4.4. Interfejs aplikacji: kartoteka towarów i surowców (opracowanie własne na podstawie danych 

udostępnionych przez przedsiębiorstwo). 

 W ramach warstwy wizualizacyjnej dostępna była również funkcja raportowania, której 

przykładowy wynik zaprezentowano na Rysunku 4.5. Raport obejmował zestawienie pomiarów 

wykonanych w danej partii wraz z informacjami o operatorze i czasie wykonania, co umożliwiało 

analizę retrospektywną oraz budowę wskaźników jakościowych. 

Rysunek 4.5. Interfejs aplikacji – raport z modułu nadzorowania masy porcji (opracowanie własne). 

 Integracja modułu z układem sterowania linii i repozytorium danych pozwoliła na odwzorowanie 

pełnego przepływu informacji w architekturze systemu oraz na uzyskanie identyfikowalności 

niezbędnej do analiz i walidacji. 

4.2. Moduł nadzorowania „nieszczelności I” 

 Szczelność opakowania stanowi jeden z kluczowych czynników determinujących bezpieczeństwo 

oraz trwałość wyrobów konfekcjonowanych. Nieszczelności I są jednym z głównych źródeł reklamacji 

zewnętrznych i wewnętrznych, a ich skuteczne wykrywanie jest niezbędnym warunkiem stabilności 

operacji pakowania. Po przeprowadzeniu analizy technicznej dostępnych na rynku rozwiązań wybrano 

urządzenia wizyjne firmy SICK typu InspectorP63x, które umożliwia zastosowanie metod głębokiego 

Source.Name Terminal Użytkownik Surowiec Zakres mas Pomiar wagi Jednostka Data Godzina

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.028 kg 22.06.2023 09:46:27

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.028 kg 22.06.2023 09:46:33

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.026 kg 22.06.2023 09:46:36

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.026 kg 22.06.2023 09:46:41

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:47:23

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:47:28

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.026 kg 22.06.2023 09:48:10

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:48:16

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:48:32

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.028 kg 22.06.2023 09:48:38

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:48:44

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.026 kg 22.06.2023 09:48:57

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:49:02

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.026 kg 22.06.2023 09:49:10

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:49:15

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.028 kg 22.06.2023 09:49:21

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:49:25

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:49:28

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.030 kg 22.06.2023 09:49:39

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.028 kg 22.06.2023 09:49:47

reverseWeighingTERM00122062023.xlsx TERM001 admin Wędzone kawałki łososia 0.026 - 0.03 0.026 kg 22.06.2023 09:49:55
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uczenia. W budowanym systemie zastosowano rozwiązanie wizyjne oparte na wielowarstwowych 

sieciach neuronowych. Szczegóły architektury sieci neuronowej, opracowanej przez firmę SICK, nie 

były publicznie ujawnione, a działania badawcze w szczególności koncentrowały się na: 

• budowie i uporządkowaniu bazy danych obrazowych oraz ich kategoryzacji, 

• przygotowaniu i optymalizacji zbiorów treningowych i walidacyjnych, w tym zastosowaniu metod 

augmentacji danych, 

• budowie klasyfikatora opartego na konwolucyjnych sieciach neuronowych oraz jego 

optymalizacji, 

• trenowaniu i walidacji modeli z wykorzystaniem różnych konfiguracji parametrów, 

• analizie jakości modeli z użyciem funkcji straty, macierzy pomyłek oraz wskaźników takich jak 

dokładność, czułość i precyzja, 

• walidacji klasyfikatora w warunkach przemysłowych i ocenie jego przydatności w nadzorze 

procesu. 

 Od wybranego rozwiązania oczekiwano, że zapewni ono: 

• automatyczną detekcję defektów w czasie rzeczywistym, 

• cyfrową rejestrację obrazów z przypisaniem identyfikatorów partii i znaczników czasowych, 

• tworzenie bazy obrazów, wykorzystywanej zarówno w bieżącej inspekcji operacyjnej, jak  

i w badaniach, 

• odporność na zmienne warunki oświetlenia oraz różnorodność defektów, 

• możliwość dalszego doskonalenia systemu poprzez trening sieci neuronowych na rozszerzanych 

zbiorach danych. 

Moduł został osadzony w czterowarstwowej architekturze systemu: 

1. W ramach warstwy akwizycji opracowano stanowisko wizyjne umożliwiające automatyczną 

rejestrację obrazów opakowań w czasie rzeczywistym. Dane wejściowe w postaci zdjęć jednostek 

opakowaniowych były pozyskiwane bezpośrednio w trakcie pracy linii produkcyjnej. Zastosowano trzy 

kamery przemysłowe SICK InspectorPx, zintegrowane z dedykowanym systemem oświetlenia LED, co 

zapewniało jednorodne warunki akwizycji i minimalizowało ryzyko powstawania refleksów. Aby 

uzyskać powtarzalność rejestracji obrazów, stanowisko zostało odpowiednio skonfigurowane  

i odseparowane od zakłóceń otoczenia. Synchronizację działania kamer z transporterem zrealizowano 

poprzez czujnik pozycji i enkoder, dzięki czemu każda jednostka produkcyjna mogła zostać uchwycona 

indywidualnie. Uzyskane obrazy były nie tylko wykorzystywane do bieżącej analizy przy użyciu metod 

inspekcji wizyjnej, lecz także systematycznie archiwizowane na serwerze FTP, co umożliwiało ich 

późniejsze wykorzystanie do badań statystycznych i uczenia modeli.  Układ stanowiska zaprezentowano 

na Rysunku 4.6. Widoczne na nim jest rozmieszczenie kamer oraz system oświetlenia. 
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Rysunek 4.6. Stanowisko modułu nadzorowania „nieszczelności I” (opracowanie własne). 

  

 Na Rysunku 4.7 przedstawiono interfejs oprogramowania kamery przemysłowej, umożliwiający 

podgląd pojedynczej próbki wraz z parametrami akwizycji. Widoczne są m.in. ustawienia czasu 

ekspozycji, kontrastu, jasności oraz pola widzenia, które pozwalały na precyzyjną konfigurację 

stanowiska i zapewniały powtarzalność rejestrowanych obrazów. 

Rysunek 4.7. Interfejs kamery w module nadzorowania „nieszczelności I” – podgląd próbki i parametry akwizycji 

obrazu (opracowanie własne). 
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 Szczegółową specyfikację wykorzystanej aparatury zestawiono w Tabeli 4.1, obejmującej elementy 

rejestrujące obraz, infrastrukturę synchronizacyjną oraz komponenty odpowiedzialne za archiwizację 

danych. 

Tabela 4.1. Aparatura wykorzystana w budowie modułu nadzorowania „nieszczelności I”. 

Lp. Element Model/typ Producent Funkcja w systemie 

1 
Czujnik wizyjny 

2D 

2 × InspectorP63x, 

V2D632P-2MXCXB0 
SICK 

Rejestracja obrazów i 

wstępna analiza wizualna 

2 
Czujnik wizyjny 

2D 

InspectorP61x, 

V2D611P-MMSCI4 
SICK 

Rejestracja obrazów 

uzupełniająca, analiza 

wizualna 

3 
Oświetlenie LED, 

filtry, obiektywy 
Zestaw dedykowany — 

Stabilizacja warunków 

oświetleniowych, redukcja 

odblasków 

4 
Oprogramowanie 

inspekcyjne 

SICK AppSpace 

SensorApps: Intelligent 

Inspection; Label 

Checker 

SICK 

Klasyfikacja OK/NOK 

oraz implementacja 

modeli głębokiego 

uczenia (CNN) 
 

5 
Synchronizacja i 

okablowanie 

Czujnik pozycji, 

enkoder, złącza, 

skrzynki 

przyłączeniowe 

— 
Synchronizacja akwizycji 

obrazu z transporterem 

6 

Komputer 

przemysłowy i 

repozytorium 

IPC, serwer FTP ELMATIC 
Archiwizacja danych 

obrazowych i metadanych 

Opracowanie własne. 

 Należy podkreślić, że przedstawiona aparatura została zaprojektowana i wdrożona z myślą  

o wykorzystaniu w więcej niż jednym obszarze nadzorowania. W module nadzorowania „nieszczelności 

I” kluczową rolę pełni kamera InspectorP63x z oprogramowaniem Intelligent Inspection, obsługująca 

analizę obrazów w celu identyfikacji defektów opakowań. Drugi egzemplarz kamery tego samego typu 

został natomiast skonfigurowany z narzędziami służącymi do analizy treści etykiet. Jego zastosowanie 

zostanie szczegółowo omówione w dalszej części pracy, w module nadzorowania etykiet ich treści. 

Dzięki takiemu podejściu całość aparatury tworzy jednolite stanowisko wizyjne, które obsługuje 

zarówno nadzorowanie szczelności opakowań, jak i inspekcję etykiet w ramach jednej linii 

produkcyjnej. 

2. Do przygotowania zastosowanego w warstwie analitycznej, klasyfikatora neuronowego, 

zgromadzone w procesie akwizycji zdjęcia jednostek opakowaniowych zostały uporządkowane  

i przetworzone w postaci dedykowanej bazy danych obrazów. Baza ta pełniła podwójną funkcję: 

operacyjną, umożliwiając bieżącą klasyfikację opakowań jako zgodnych (OK) lub potencjalnie 

niezgodnych (NOT OK - na potrzeby niniejszego podrozdziału określenia NOT OK i NOK są stosowane 

zamiennie i oznaczają wyrób niezgodny), oraz badawczą, stanowiąc materiał źródłowy do analiz 

statystycznych i do uczenia modeli głębokiego uczenia. 
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 Każdemu obrazowi przypisywano metadane, takie jak numer partii, znacznik czasowy oraz 

identyfikacje operatora. Dane te były archiwizowane zarówno lokalnie, jak i na serwerze FTP, co 

zapewniało pełną identyfikowalność i możliwość późniejszej analizy. Utworzona baza obejmowała 

docelowo około 500 obrazów, które zostały wykorzystane w procesie trenowania modeli. Należy 

podkreślić, że liczba ta odnosi się do końcowej wersji repozytorium, natomiast sam proces budowy  

i testowania baz danych obejmował tysiące zdjęć, grupowanych w różne warianty o mniejszej i 

większej liczebności. Takie podejście umożliwiało między innymi analizę wpływu wielkości zbioru 

danych na skuteczność klasyfikacji i stabilność działania algorytmów. Wersja bazy wykorzystana w 

badaniach obejmowała: 

• obrazy wyrobów zgodnych (OK), pełniące rolę referencji, 

• obrazy wyrobów potencjalnie niezgodnych (NOT OK), obejmujących różne typy niezgodności 

zidentyfikowanych dla „nieszczelności I”. Na etapie budowy bazy danych i prowadzenia badań 

kategorie te określano potocznie jako „Brak folii”, „Pęknięta tacka”, „Otwarta tacka”, „Pusta tacka”, 

„Zabrudzona tacka”, „Inna”. Co do zasady, odpowiadają one niezgodnościom formalnie opisanym 

we wcześniejszej identyfikacji problemów i niezgodności w obszarze operacji pakowania. 

 Przykładowy widok uporządkowanej bazy danych obrazów wraz z wstępną kategoryzacją 

niezgodności zaprezentowano na Rysunku 4.8. 
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Rysunek 4.8. Baza danych obrazów z wstępną kategoryzacją defektów (przykłady obrazów OK i niezgodnych) 

(opracowanie własne). 
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 Z kolei na Rysunku 4.9 przedstawiono szczegółowe obrazy opakowań zarejestrowane w trakcie 

budowania bazy danych. Zestawienie obejmuje zarówno jednostkę zgodną (OK), jak i wybrane 

przypadki niezgodności, które były najczęściej identyfikowane w procesie konfekcjonowania. 

Rysunek 4.9. Przykładowe obrazy opakowań w module nadzorowania „nieszczelności I” – opakowanie zgodne 

(OK) oraz wybrane przypadki opakowań niezgodnych (NOT OK): pęknięte opakowanie, otwarte opakowanie, 

opakowanie z zabrudzeniem w obszarze zgrzeiny (opracowanie własne). 

  Uporządkowane i sklasyfikowane dane obrazowe stanowiły podstawę do opracowania modelu 

inspekcji wizyjnej. Do realizacji klasyfikatora obrazu wykorzystano konwolucyjne sieci neuronowe, 

które automatycznie wyodrębniają istotne cechy z obrazu, redukują wymiarowość i dokonują końcowej 

klasyfikacji. Architektura CNN (Convolutional Neural Network) zapewnia odporność na przesunięcia, 

różnice w oświetleniu oraz drobne deformacje, co czyni ją szczególnie użyteczną w warunkach 

przemysłowych. Proces uczenia przeprowadzono w środowisku SICK Intelligent Inspection 

(dStudio), umożliwiającym trenowanie i walidację modeli oraz ich bezpośredni eksport do kamer 

pracujących w linii produkcyjnej. W trakcie badań przeprowadzono wiele iteracji treningowych, testując 

różne konfiguracje zbiorów danych i parametry akwizycji. 

 Na pierwotnym etapie przygotowania dane obrazowe zostały zweryfikowane pod względem jakości 

i zapisane w plikach o odpowiednim formacie (PNG), umożliwiającym ich wykorzystanie w procesie 

uczenia. Zbiór danych podzielono na część treningową i walidacyjną, co jest standardem w procesie 

uczenia głębokiego. Aby zrównoważyć nierównomierny rozkład próbek między klasami, zastosowano 

techniki augmentacji (obrót obrazu, zmiany jasności), co zwiększyło różnorodność danych. W celu 
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zapewnienia wiarygodności działania modułu przyjęto próg ufności (confidence) na poziomie 90%, co 

stanowiło kompromis między ograniczeniem ryzyka fałszywych akceptacji wyrobów wadliwych  

a minimalizacją nadmiarowych odrzuceń wyrobów zgodnych. 

 Pierwotnie przyjęto sześć rozróżnialnych kategorii stanu: 

1. OK – opakowania zgodne, 

2. Brak folii, 

3. Pęknięta tacka, 

4. Otwarta tacka, 

5. Pusta tacka, 

6. Inna – defekty nietypowe (np. zabrudzenia, deformacje). 

 Wyniki uzyskane dla tego wariantu, w trakcie fazy trenowania i analizy przebiegów funkcji straty 

oraz dokładności prezentowały stabilne zachowanie i spełniały oczekiwania jednak szczegółowa analiza 

macierzy pomyłek wykazała istotne rozbieżności w klasyfikacji. Podczas walidacji w warunkach 

przemysłowych problem ten uległ nasileniu a model szczególnie często wykazywał trudności  

w jednoznacznym przypisaniu wyrobów niezgodnych do odpowiednich kategorii, co wynikało ze 

złożoności i niejednorodności defektów. Jednocześnie potwierdzono, że klasyfikator osiągał bardzo 

wysoką skuteczność w identyfikacji wyrobów zgodnych (OK), natomiast problemy koncentrowały się 

głównie na rozróżnianiu przypadków niezgodnych. 

 W związku z tym zdecydowano się uprościć klasyfikację do trzech kategorii: 

1. OK, 

2. NOT OK (łącząca wszystkie defekty powodujące „nieszczelności I”), 

3. PUSTA. 

 Redukcja liczby klas pozwoliła znacząco zwiększyć stabilność i dokładność klasyfikacji przy 

jednoczesnym uproszczeniu logiki decyzyjnej, co zostało potwierdzone zarówno w dalszych testach 

symulacyjnych, jak i w walidacji przemysłowej. 

 Dla pierwotnej wersji klasyfikatora, obejmującej sześć klas niezgodności, przeprowadzono proces 

trenowania sieci neuronowej, który pozwolił na ocenę zdolności modelu do rozróżniania różnych typów 

niezgodności opakowań w rzeczywistych warunkach przemysłowych. Na Rysunku 4.10 przedstawiono 

przebieg dokładności klasyfikatora w funkcji liczby kroków treningu, osobno dla zbioru treningowego 

i walidacyjnego. Model osiągnął dokładność na poziomie 100% dla danych treningowych oraz 93,5% 

dla danych walidacyjnych. Uzyskany wynik świadczy o dobrej zdolności generalizacji modelu  

w kontekście wieloklasowej klasyfikacji wad wyrobu, co jest istotne w aplikacjach przemysłowych, 

gdzie defekty mogą mieć zróżnicowaną charakterystykę wizualną. 
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Rysunek 4.10. Dokładność pierwotnej klasyfikacji modelu w procesie trenowania – przebieg dla zbioru 

treningowego i walidacyjnego (6 klas) (opracowanie własne). 

 W celu pełniejszej oceny jakości trenowanego modelu, analizie poddano również przebieg funkcji 

straty (loss), która opisuje błąd predykcji modelu w trakcie uczenia. Na Rysunku 4.11 zaprezentowano 

przebieg straty w skali logarytmicznej. Taka prezentacja umożliwia obserwację minimalnych wahań 

wartości błędu w fazie treningu oraz pozwala ocenić proces adaptacji modelu do złożonych wzorców 

wizualnych. Widać wyraźnie, że w miarę wzrostu liczby kroków treningowych model skutecznie 

redukował błąd i stabilizował się na zadowalającym poziomie. 

Rysunek 4.11. Przebieg pierwotnej funkcji straty (loss) w procesie uczenia modelu – skala logarytmiczna 

(opracowanie własne). 
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 Dla uproszczonych interpretacji różnic pomiędzy stratą na danych treningowych a walidacyjnych, 

ten sam przebieg przedstawiono w skali liniowej na Rysunku 4.12. Wykres ten ukazuje stabilność błędu 

na zbiorze treningowym oraz umiarkowane wahania dla zbioru walidacyjnego, typowe przy pracy  

z ograniczonymi zbiorami danych i niejednorodnością klas defektów. 

Rysunek 4.12. Przebieg pierwotnej funkcji straty (loss) w procesie uczenia modelu – skala liniowa (opracowanie 

własne). 

 Dla ostatecznej wersji klasyfikatora, w której kategorie zredukowano do trzech (OK, NOT OK, 

PUSTA), przeprowadzono kompletny cykl trenowania sieci neuronowych w środowisku dStudio. 

Optymalizacja parametrów akwizycji obrazu oraz przygotowanie wyselekcjonowanej bazy danych 

umożliwiły uzyskanie wysokiej skuteczności i stabilnych wyników klasyfikacji. Ostateczny model 

osiągnął 100% dokładności na zbiorze treningowym oraz 97% na zbiorze walidacyjnym, co 

potwierdza jego zdolność do prawidłowej generalizacji w warunkach przemysłowych. Na Rysunku 

4.13 przedstawiono przebieg dokładności (accuracy) w funkcji liczby kroków treningowych. Widać, że 

model bardzo szybko osiągnął wysoki poziom skuteczności i utrzymywał go stabilnie zarówno dla 

danych treningowych, jak i walidacyjnych, bez oznak przeuczenia. 

Rysunek 4.13. Dokładność ostatecznej klasyfikacji modelu w procesie trenowania – przebieg dla zbioru 

treningowego i walidacyjnego (3 klasy) (opracowanie własne). 
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 Analiza funkcji straty w skali logarytmicznej, przedstawiona na Rysunku 4.14, pokazuje 

systematyczne zmniejszanie błędów predykcji na zbiorze treningowym oraz utrzymywanie się stabilnej 

wartości straty na zbiorze walidacyjnym. Logarytmiczna skala umożliwia obserwację drobnych wahań 

w końcowej fazie uczenia, które potwierdzają proces adaptacji modelu do złożonych wzorców 

wizualnych. Takie zachowanie wskazuje na brak przeuczenia (overfittingu) i potwierdza zdolność 

modelu do prawidłowej generalizacji w warunkach przemysłowych. 

 

Rysunek 4.14. Przebieg ostatecznej funkcji straty (loss) w procesie uczenia modelu – skala logarytmiczna 

(opracowanie własne). 

 Dla przejrzystości porównania wartości strat, na Rysunku 4.15 przedstawiono ich przebieg w skali 

liniowej. Widać wyraźnie, że strata na zbiorze treningowym bardzo szybko spadła do wartości bliskiej 

zeru i utrzymywała się na stabilnym poziomie w całym procesie uczenia. Strata na zbiorze 

walidacyjnym utrzymywała się w granicach 0,2–0,4, wykazując umiarkowane wahania typowe dla 

rzeczywistych danych przemysłowych. Taki przebieg potwierdza brak przeuczenia i zdolność modelu 

do stabilnej generalizacji. 

Rysunek 4.15. Przebieg ostatecznej funkcji straty (loss) w procesie uczenia modelu – skala liniowa (opracowanie 

własne). 
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 Celem weryfikacji działania modelu inspekcji wizyjnej w module nadzorowania „nieszczelności I” 

było potwierdzenie skuteczności automatycznej klasyfikacji stanu opakowań oraz niezawodności jego 

pracy w warunkach przemysłowych. Model ten, bazujący na kamerach 2D i algorytmach głębokiego 

uczenia, zastąpił dotychczasowe kontrole, które w warunkach dużej skali produkcji nie gwarantowały 

pełnej wykrywalności niezgodności. Proces walidacji przeprowadzono wieloetapowo, początkowo  

w środowisku testowym dStudio, a następnie w warunkach rzeczywistej linii produkcyjnej. 

 Dla oceny modeli wykorzystano macierze pomyłek (confusion matrices), które pozwoliły na ocenę 

dokładności klasyfikacji względem rzeczywistych klas wyrobów (ground truth). Wyniki dla 

pierwotnych wersji modeli przedstawiono na Rysunku 4.16. Obejmują one zarówno klasyfikację 

sześcioklasową, jak i pierwsze próby uproszczenia klasyfikatora do trzech klas. W obu przypadkach 

skuteczność była niezadowalająca, zauważalne były liczne pomyłki między kategoriami oraz niska 

stabilność wyników. Macierze te dobrze obrazują trudności, jakie pojawiały się na początkowych 

etapach badań i uzasadniały konieczność dalszej optymalizacji budowy klasyfikatora. 

Rysunek 4.16. Macierze pomyłek dla pierwotnych wersji modelu inspekcji wizyjnej w module nadzorowania 

„nieszczelności I” (opracowanie własne). 



  

81 

 

 Wyniki ostatecznej wersji modelu inspekcji wizyjnej w module nadzorowania „nieszczelności I” 

przedstawiono na Rysunku 4.17. Macierz pomyłek potwierdza wysoką skuteczność klasyfikacji  

w układzie trójklasowym (OK, NOT OK, PUSTA). Wszystkie próbki z kategorii PUSTA i OK zostały 

zaklasyfikowane prawidłowo, natomiast w przypadku klasy NOT OK odnotowano pojedynczą 

pomyłkę polegającą na błędnej kwalifikacji jednej próbki.  

Rysunek 4.17. Macierz pomyłek dla ostatecznej wersji modelu wersji inspekcji wizyjnej w module nadzorowania 

„nieszczelności I” (opracowanie własne). 

 Ostateczny model osiągnął następujące parametry skuteczności: 

• dokładność (accuracy) 97% na zbiorze walidacyjnym oraz 100% na zbiorze treningowym, 

• czułość (sensitivity) dla klasy NOT OK: 95% (19/20), 

• precyzja (precision) dla klasy NOT OK: 100% (19/19), 

• tylko jeden przypadek błędnej klasyfikacji (false negative) wśród 49 próbek testowych. 

 Walidację uzupełniono o testy w rzeczywistych warunkach produkcyjnych. W pierwszej próbie 

kontrolnej, obejmującej podstawianie do linii opakowań z celowo wprowadzonymi niezgodnościami, 

model poprawnie zidentyfikował 9 z 10 wadliwych próbek, co odpowiada skuteczności na poziomie 

90%. Następnie przeprowadzono testy ciągłe, w których oceniano stabilność pracy modelu i czas reakcji 

systemu. Statystyki przedstawione na Rysunku 4.18 potwierdzają, że model osiągał 99% poprawnych 

klasyfikacji w serii ponad 880 próbek. Średni czas akwizycji i klasyfikacji pojedynczego obrazu 

wyniósł 233 ms, co umożliwiało pełną synchronizację z pracą linii produkcyjnej bez konieczności 

obniżania jej wydajności. 
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Rysunek 4.18. Statystyki walidacji modelu inspekcji wizyjnej w module nadzorowania „nieszczelności I” – testy 

w warunkach produkcyjnych (opracowanie własne). 

 Opracowany model inspekcji wizyjnej oparty na metodach głębokiego uczenia pełni przede 

wszystkim funkcję klasyfikatora wyrobów na podstawie danych obrazowych. Jego działanie polega 

na analizie obrazów rejestrowanych w trakcie pracy linii produkcyjnej i przypisywaniu ich do jednej  

z trzech klas jakościowych: OK, NOT OK lub PUSTA. Z tego względu można uznać, że model ten w 

istotnym stopniu należy do warstwy analitycznej modułu nadzorowania „nieszczelności I”, 

zapewniając obiektywną ocenę jakości w oparciu o dane procesowe. Wyniki klasyfikacji stanowią 

jednocześnie dane wejściowe dla warstwy decyzyjnej, w której określana jest dalsza ścieżka 

postępowania z wyrobem. 

3. Warstwa decyzyjna w module nadzorowania „nieszczelności I” odpowiada za deterministyczne 

podejmowanie decyzji dotyczących jakości wyrobu na podstawie wyników uzyskanych w warstwie 

analitycznej. Wynik klasyfikacji generowany przez model inspekcji wizyjnej oparty na metodach 

głębokiego uczenia (CNN) stanowi podstawę do przypisania wyrobu do jednej z trzech kategorii: OK, 

NOT OK lub PUSTA.  Na Rysunku 4.19 przedstawiono przykładowy widok działania klasyfikatora 

w trakcie pracy modułu nadzorowania „nieszczelności I”. Widoczny jest wynik klasyfikacji 

przypisujący opakowanie do klasy OK wraz z wartością confidence powyżej 90%, co pozwala na 

pozytywną decyzję o dopuszczeniu wyrobu. Dla predykcji o pewności poniżej 90% przyjmowano 

decyzję zachowawczą: wyrób kierowano do kategorii NOT OK, co minimalizowało ryzyko fałszywej 

akceptacji. 
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Rysunek 4.19. Widok klasyfikatora AI w module nadzorowania „nieszczelności I” – wynik klasyfikacji  

z wartością confidence (opracowanie własne). 

 Decyzje klasyfikacyjne są następnie przekazywane na porty cyfrowe urządzenia inspekcyjnego, co 

umożliwia sterowanie dalszym przepływem wyrobów w linii produkcyjnej. Przyjęto następującą logikę 

działania: 

• IO3 (WynikOK) – aktywacja w przypadku zaklasyfikowania wyrobu do klasy OK, 

• IO5 (WynikNOK) – aktywacja w przypadku zaklasyfikowania wyrobu do klasy NOT OK lub 

PUSTA. 

 Schemat konfiguracji wyjść cyfrowych zaprezentowano na Rysunku 4.20, gdzie przedstawiono 

przypisanie sygnałów sterujących do poszczególnych kategorii jakościowych. 

Rysunek 4.20. Konfiguracja wyjść cyfrowych dla logiki decyzyjnej w module nadzorowania „nieszczelności I” 

(opracowanie własne). 
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 System działa w sposób deterministyczny, co oznacza, że każda próbka musi zostać jednoznacznie 

zaklasyfikowana do jednej z trzech kategorii. Decyzja o dalszym postępowaniu z wyrobem 

podejmowana jest automatycznie, a w przypadku aktywacji wyjścia IO5 uruchamiany jest mechanizm 

odrzutu. Działanie logiki systemu można przedstawić w postaci uproszczonego pseudokodu, 

zaprezentowanego na Rysunku 4.21. Schemat ten obrazuje, że w przypadku przypisania wyrobu do 

klasy NOT OK lub PUSTA system natychmiast inicjuje procedurę odrzutu, podczas gdy wyroby 

sklasyfikowane jako OK kierowane są do dalszego etapu konfekcjonowania. 

Rysunek 4.21. Uproszczony pseudokod logiki decyzyjnej w module nadzorowania „nieszczelności I” 

(opracowanie własne). 

4. Warstwa wizualizacyjna w module nadzorowania „nieszczelności I” pełni rolę interfejsu pomiędzy 

systemem a operatorem, zapewniając przejrzystą prezentację wyników pracy modelu inspekcji wizyjnej 

oraz ułatwiając nadzór nad operacją pakowania. Jej głównym zadaniem jest przedstawienie wyników 

klasyfikacji próbek w czasie rzeczywistym, z jednoznacznym wskazaniem kategorii jakościowej (OK, 

NOT OK, PUSTA) oraz wartości wskaźnika confidence. Na ekranach aplikacji możliwe jest nie tylko 

śledzenie bieżącej klasyfikacji, ale także dostęp do ustawień i parametrów konfiguracji stanowiska 

inspekcyjnego. Operator ma możliwość kontroli takich elementów, jak czas ekspozycji, kontrast czy 

jasność, co pozwala na bieżące dostosowanie warunków akwizycji obrazu w zależności od sytuacji na 

linii produkcyjnej. Ważnym elementem warstwy wizualizacyjnej jest sygnalizacja kolorystyczna, 

ułatwiająca szybkie odczytywanie statusu wyrobów np. kolor zielony dla próbek zgodnych (OK), 

czerwony dla wyrobów zaklasyfikowanych jako NOT OK. Takie rozwiązanie skraca czas reakcji 

operatora i zwiększa przejrzystość pracy systemu. Warstwa wizualizacyjna obejmuje również funkcje 

raportowania i archiwizacji. Dane dotyczące wyników klasyfikacji, oznaczone identyfikatorami partii, 

operatora i znacznikami czasowymi, są automatycznie zapisywane w bazie systemu, a następnie mogą 

być eksportowane do plików raportowych (np. w formacie Excel). Dzięki temu operatorzy i personel 

techniczny mają dostęp do pełnej historii inspekcji, co wspiera analizy retrospektywne, audyty jakości 

oraz doskonalenie procesu. 
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4.3. Moduł nadzorowania „nieszczelności II” 

 Operacja pakowania stanowi centralny etap procesu konfekcjonowania, decydujący o szczelności 

opakowań. W ramach niniejszej pracy operacja pakowania była realizowana z użyciem maszyny typu 

tray sealer. Proces polegał na zamykaniu tacek folią barierową, przy jednoczesnym zastąpieniu 

powietrza mieszaniną gazów ochronnych. W badaniach wykorzystano następujące materiały 

opakowaniowe: 

• Tacka opakowaniowa W1/602 (187/137/50), 850 ml, polipropylen (PP) – szczegółową 

specyfikację techniczną zamieszczono w Załączniku Z.2. 

• Folia CX-P AHB 55 AF / CX-P AHB 55 AF peel – szczegółową specyfikację techniczną 

zamieszczono w Załączniku Z.1. 

W przeprowadzonej analizie problemów wskazano, że stabilność procesu konfekcjonowania 

wyrobów i związana z nią szczelność opakowań w dużej mierze zależy od utrzymania kluczowych 

parametrów technologicznych w wąskich granicach tolerancji. Dlatego w module nadzorowania 

„nieszczelności II” opracowano model predykcji mikronieszczelności opakowań oparty na regresji 

logistycznej.  

Zastosowana metoda, zaliczana do podstawowych technik uczenia maszynowego, pozwala na 

modelowanie prawdopodobieństwa wystąpienia niezgodności w zależności od wartości parametrów 

procesowych. Jej wdrożenie umożliwiło nie tylko prognozowanie potencjalnych defektów, ale również 

ilościową ocenę wpływu poszczególnych zmiennych na ryzyko utraty szczelności. Zbudowany model 

był wynikiem realizacji programu badań, którego istotą było prowadzenie eksperymentów, 

gromadzenie i cyfryzacja danych procesowych oraz ich analiza w celu identyfikacji i ilościowej oceny 

czynników determinujących ryzyko mikronieszczelności.  

 Prace obejmowały: 

• eksperymenty czynne których celem było spośród wielu badanych zmiennych wytypowanie 

kluczowych parametrów technologicznych, a następnie przeprowadzenie analizy zależności 

pomiędzy tymi parametrami a stabilnością i efektywnością procesu oraz charakterystykami 

jakościowymi wyrobu. Kolejnym krokiem było wyznaczenie progów i limitów wartości tych 

parametrów, określających obszar stabilnej pracy operacji pakowania, 

• cyfryzację i integrację danych procesowych obejmującą opracowanie infrastruktury 

umożliwiającej ciągły pomiar, rejestrację i archiwizację kluczowych zmiennych technologicznych. 

Rozwiązanie to pozwoliło na pełną identyfikowalność cykli produkcyjnych, synchronizację 

czasową obserwacji i przygotowanie spójnej bazy danych, która stała się fundamentem dalszych 

analiz statystycznych oraz budowy modeli, 

• budowę modelu predykcyjnego, którego celem było prognozowanie ryzyka występowania 

„nieszczelności II” oraz przygotowanie do implementacji w systemie nadzorowania w czasie 

rzeczywistym. Proces obejmował przygotowanie zbioru danych z etykietami jakościowymi (na 
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podstawie badań niszczących zawartości tlenu), estymację parametrów modelu oraz analizę 

istotności zmiennych. Dzięki temu możliwe było ilościowe określenie wpływu wybranych 

parametrów technologicznych na prawdopodobieństwo wystąpienia niezgodności. 

• walidację modelu w warunkach przemysłowych, zrealizowaną na rzeczywistych danych 

produkcyjnych. Obejmowała ona zarówno klasyczne miary jakości klasyfikacji (accuracy, 

sensitivity, specificity), jak i analizę krzywej ROC oraz wartości AUC, co pozwoliło ocenić 

zdolność modelu do praktycznego rozróżniania wyrobów zgodnych i niezgodnych. 

 Na Rysunku 4.22 zaprezentowano plan badań odnoszący się do modułu nadzorowania 

„nieszczelności II”. Schemat ten ilustruje kolejne etapy postępowania. Tak zaplanowany i zrealizowany 

program sprawił, że moduł „nieszczelności II” stanowi najbardziej istotny element rozprawy w aspekcie 

naukowym, a jego szczegółowa analiza została przedstawiona w dalszej części pracy. 

Rysunku 4.22. Plan badań w module nadzorowania „nieszczelności II” (opracowanie własne). 

 Pierwszym etapem przygotowywania modułu nadzorowania „nieszczelności II” była 

eksperymentalna analiza parametrów technologicznych odpowiadających za szczelność opakowań. 

W tym celu przeprowadzono serię prób czynnych, w ramach których modyfikowano wiele parametrów 

jak wartości temperatury zgrzewania, ciśnienia w komorze pakującej, czasu cyklu, wydajności linii, siły 

docisku elementów zgrzewających oraz naciągu folii. Eksperymenty obejmowały różne kombinacje 

nastaw, pozwalając na obserwację i ocenę stabilności procesu w odniesieniu do wyników pomiarów 

zawartości tlenu w opakowaniu. Jeden z układów eksperymentalnych wraz z zestawieniem badanych 

wariantów parametrów technologicznych przedstawiono na Rysunku 4.23. Należy podkreślić, że był to 

istotny etap badań w ramach niniejszej rozprawy, gdyż umożliwił identyfikację czynników  

o największym znaczeniu dla powstawania potencjalnych mikronieszczelności. Dzięki takiemu 

postępowaniu uzyskano dane empiryczne obejmujące zarówno przebieg procesu w warunkach 
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zgodnych ze specyfikacją techniczną, jak i w sytuacjach krytycznych sprzyjających powstawaniu wad. 

Stworzona w ten sposób baza pomiarów posłużyła nie tylko do wskazania parametrów krytycznych, 

lecz także stanowiła fundament dalszych analiz statystycznych oraz budowy modeli predykcyjnych. 

Rysunek 4.23. Układ eksperymentalny: warianty parametrów technologicznych operacji pakowania (opracowanie 

własne). 

 Wyniki eksperymentów czynnych umożliwiły wskazanie trzech parametrów krytycznych, 

których utrzymanie w określonych granicach stanowi warunek zachowania szczelności opakowania 

oraz utrzymania wartości tlenu poniżej progu 1,0%. Selekcja tych parametrów była wynikiem analizy 

zależności pomiędzy zmiennymi procesowymi a wynikami pomiarów zawartości tlenu, stanowiącego 

podstawowe kryterium jakościowego. Wykazano, że temperatura zgrzewania, ciśnienie bezwzględne 

w komorze pakującej oraz wydajność linii pozostają ze sobą wzajemnie skorelowane, wprost lub 

odwrotnie proporcjonalnie a ich odchylenia prowadzą do powstawania mikronieszczelności. Pozostałe 

analizowane zmienne nie wnosiły istotnej wartości, co potwierdziły wyniki testów niszczących 

polegających na pomiarze zawartości tlenu w opakowaniach. W konsekwencji to właśnie te trzy 

parametry uznano za kluczowe w dalszych analizach i do nich przypisano limity operacyjne procesu. 

Charakter ich oddziaływania przedstawiono poniżej: 

• temperatura zgrzewania – czynnik decydujący o szczelności opakowania; wartości poniżej 

zakresu skutkowały nieszczelnościami, natomiast zbyt wysokie powodowały przegrzewanie 

zgrzeiny, 

• ciśnienie bezwzględne w komorze pakującej – zbyt niskie wartości sprzyjały 

mikronieszczelnościom oraz podwyższonym wynikom pomiarów zawartości tlenu, natomiast zbyt 

wysokie prowadziły do „wybrzuszeń” folii, 

Opakowanie: W1/602(187/137/50) 850ML TRANSPARENT PP
Folia CX-P AHB 55 AF / CX-P AHB 55 AF peel

Wariant
Temperatura 

[ C' ]
Czas zgrzewania Ciśnienie VACUM Ciśnienie gaz

Wydajność 
[ szt/min]

Uwagi

1 153 1,5 s 50 m bar 800 m bar 15  0.17  1.55  0.41  0.14  0.09
2 143 1,5 s 50 m bar 800 m bar 15 19.78 19.78 19.77 19.77 19.76 całkowita nieszczelnośc
3 173 1,5 s 50 m bar 800 m bar 15  0.23  0.10  0.19  0.10  0.07 zauważanlne przepalenia
4 183 1,5 s 50 m bar 800 m bar 15  0.09  3.87  1.63  6.49  0.16 awaria maszyny
5 163 1 s 50 m bar 800 m bar 15  0.19  0.14  0.16  0.13  0.21
6 163 0,5 s 50 m bar 800 m bar 15  0.08  8.52  0.21  8.05  8.49
7 163 2 s 50 m bar 800 m bar 15  0.13  0.12  0.16  0.35  0.71 zauważanlne przepalenia
8 163 2,5 s 50 m bar 800 m bar 15  0.41  0.13  0.57  0.10  0.37 zauważanlne przepalenia
9 163 1,5 s 35 m bar 800 m bar 15  0.64  0.14  0.07  0.11  0.09

10 163 1,5 s 20 m bar 800 m bar 15  0.29  0.04  0.05  0.27  0.34 defekt opakowania 
11 163 1,5 s 65 m bar 800 m bar 15  0.19  0.18  0.21  0.16  0.16
12 163 1,5 s 80 m bar 800 m bar 15  0.30  0.62  0.48  0.28  0.20 defekt opakowania 
13 163 1,5 s 50 m bar 700 m bar 15  0.25  0.30  0.15  0.23  0.13 defekt opakowania 
14 163 1,5 s 50 m bar 600 m bar 15  0.47  0.27  0.62  0.19  1.90
15 163 1,5 s 50 m bar 900 m bar 15  0.37  0.35  0.13  0.13  0.07
16 163 1,5 s 50 m bar 1000 m bar 15  0.18  0.08  0.11  0.06  0.05 defekt opakowania 
17 163 1,5 s 50 m bar 800 m bar 10  0.23  0.17  0.17  0.10  0.13 wydajnośc min
18 163 1,5 s 50 m bar 800 m bar 10  0.27  0.28  0.21  0.16  0.11 wydajnośc min
19 163 1,5 s 50 m bar 800 m bar 30  0.10  0.46  0.19  0.52  0.14 wydajność max
20 163 1,5 s 50 m bar 800 m bar 30  0.14  0.45  0.11  0.11  0.15 wydajność max

Pomiar resztki tlenowej [%]
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• wydajność linii – determinowała czas oddziaływania czynników procesowych; niższe prędkości 

stabilizowały proces, natomiast wyższe skutkowały pogorszeniem szczelności i wzrostem 

zawartości tlenu. 

 Następnie wyznaczono limity parametrów krytycznych, określające obszar stabilnej pracy 

operacji pakowania: 

• temperatura zgrzewania: 162,8–163,2 °C, 

• ciśnienie bezwzględne w komorze pakującej: 30–60 mbar, 

• wydajność linii: 0–30 szt./min. 

 Zakresy te ustalono w wyniku analizy eksperymentalnej oraz weryfikacji praktycznej, a także  

w odniesieniu do zaleceń zawartych w kartach technicznych opakowań i folii (Załączniki Z.1 i Z.2). 

Warto zaznaczyć, że ocena szczelności opakowania za pomocą pomiaru zawartości tlenu miała 

charakter metody niszczącej. W badaniach wykorzystano analizator gazowy OXY BABY, 

umożliwiający oznaczenie zawartości tlenu w atmosferze ochronnej wewnątrz opakowania. Dla 

badanego asortymentu przyjęto wartość graniczną 1,0%, ustaloną na podstawie doświadczeń 

zakładowych i badań mikrobiologicznych. Jej przekroczenie klasyfikowano jako niezgodność 

krytyczną. Stanowisko pomiarowe zaprezentowano na Rysunku 4.24. W celu potwierdzenia 

prawidłowości stosowanych procedur pomiarowych i jakości uzyskiwanych danych do pracy dołączono 

świadectwa kalibracji analizatora gazu (Załączniki Z.9 i Z.10). 

Rysunek 4.24. Stanowisko do pomiaru zawartości tlenu w opakowaniach (opracowanie własne na podstawie 

danych udostępnionych przez przedsiębiorstwo). 

 W ramach nadzoru nad operacją pakowania kluczowe znaczenie miała kontrola temperatury 

elementów zgrzewających. W systemie pomiarowym stosowano pięć czujników rezystancyjnych 

typu Pt100, rozmieszczonych w taki sposób, aby monitorować temperaturę w pięciu punktach 

odpowiadających położeniu opakowań w jednym cyklu pracy maszyny. Takie rozmieszczenie 

zapewniało wysoką rozdzielczość przestrzenną pomiarów i umożliwiało wychwycenie lokalnych 
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odchyleń temperaturowych mogących powodować nieszczelności. Każdy czujnik tworzył niezależny 

tor pomiarowy, a jego sygnał był przekazywany bezpośrednio do systemu rejestracji i wizualizacji. 

Zastosowano model PTR 25 w wykonaniu przemysłowym, zgodnym z normą PN-EN 60751,  

z eksponowaną spoiną pomiarową i zakresem pracy od –40 do 500 °C. Kartę katalogową stosowanych 

czujników temperatury (DTR) przedstawiono w Załączniku Z.3. Aby zapewnić wiarygodność  

i powtarzalność pomiarów, w przedsiębiorstwie stosowano system rotacyjnej kalibracji czujników. 

Zakład dysponował dwoma kompletami: 

• pierwszy komplet pracował w maszynie, 

• drugi był wykorzystywany do okresowej kalibracji w laboratorium. 

 Kalibracja odbywała się w sposób naprzemienny, co umożliwiało utrzymanie ciągłości 

monitoringu bez przestojów linii produkcyjnej. Regularna kontrola poprawności wskazań 

gwarantowała, że uzyskiwane dane były rzetelne i mogły stanowić podstawę do dalszych analiz 

statystycznych oraz do weryfikacji wartości granicznych parametrów krytycznych w operacji 

pakowania.  Tak przygotowane procedury pomiarowe stanowiły podstawę do przejścia na kolejny etap 

prac, obejmujący cyfryzację i integrację danych procesowych w czasie rzeczywistym, co pozwoliło 

na wdrożenie warstwy akwizycji w module nadzorowania. 

1. Warstwa akwizycji miała zapewnić ciągłą rejestrację parametrów krytycznych z wysoką 

dokładnością, jednoznaczną identyfikowalność partii i synchronizację czasową obserwacji, prezentację 

bieżących wartości na panelach operatorskich HMI oraz bezpieczną archiwizację z możliwością 

eksportu do formatu raportowego. Wymagania te wynikały bezpośrednio z wyników przeprowadzonych 

eksperymentów czynnych i przyjętych procedur metrologicznych, które potwierdziły zestaw 

parametrów krytycznych oraz ich limity robocze. Zakres monitorowanych kluczowych zmiennych 

technologicznych zestawiono w Tabeli 4.2, obejmującej zarówno źródła danych, częstotliwość ich 

rejestracji, jak i przypisane progi alarmowe. 

Tabela 4.2. Kluczowe parametry technologiczne monitorowane w module nadzorowania „nieszczelności II”. 

Nazwa 

parametru 
Jednostka 

Zakres 

monitorowania 

Zakres 

referencyjny 

(limity 

robocze) 

Źródło 

pomiaru / 

rejestracji 

Częstotliwość 

zapisu 

Próg 

alarmowy 

Temperatura 

zgrzewania 
°C 5–250 162,8–163,2 

Czujnik 

Pt100 

PTR 25, 

rejestracja 

przez OPC 

UA 

co każdy cykl 

wyjście 

poza 

[162,8–

163,2] °C 

w danym 

cyklu 

Ciśnienie 

bezwzględne 

w komorze 

pakującej 

mbar 0–1000 30–60 

Przetwornik 

próżni, 

PLC, OPC 

UA 

co każdy cykl 

wyjście 

poza [30; 

60] mbar 

w danym 

cyklu 
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Wydajność 

linii 
szt./min 0–60 

0–30 (zakres 

badawczy / 

recepturowy) 

Enkoder / 

licznik 

cykli w 

PLC 

co każdy cykl 

wyjście 

poza [0–

30] 

szt./min w 

danym 

cyklu 

Zawartość 

tlenu 

resztkowego 

(O₂) 

% 0–21 0–1,0 

Analizator 

OXY 

BABY 

(metoda 

niszcząca) 

według planu 

próbkowania 
> 1,0% 

Opracowanie własne. 

 Przed wdrożeniem systemu dostęp do informacji procesowych był ograniczony do podglądu na 

panelach operatorskich, bez możliwości cyfrowej rejestracji danych i bez uruchomionych interfejsów 

transmisyjnych. Producent zastosował zamknięte protokoły komunikacyjne, które uniemożliwiały 

pobieranie sygnałów bezpośrednio ze sterownika maszyny. Konieczne było więc wypracowanie 

alternatywnej metody cyfryzacji danych w czasie rzeczywistym, z pominięciem ograniczeń 

producenckich. Ostatecznie przyjęto rozwiązanie oparte na komunikacji OPC UA pomiędzy 

sterownikami PLC a panelem operatorskim HMI, z wykorzystaniem routera eWON pełniącego 

funkcję serwera danych. Router ten gromadził i udostępniał w czasie rzeczywistym wartości 

kluczowych zmiennych procesowych, stanowiąc bufor integracyjny pomiędzy poziomem sterowania a 

systemem wizualizacji i archiwizacji. Infrastruktura systemu obejmowała dwie szafy sterownicze: 

• pierwszą, wyposażoną w moduły PLC i układ akwizycji danych odpowiedzialny za sterowanie  

i zbieranie sygnałów z maszyny (Rysunek 4.25), 

Rysunek 4.25. Szafa sterownicza systemu pakowania z modułami PLC i układem akwizycji danych (opracowanie 

własne na podstawie danych udostępnionych przez przedsiębiorstwo). 
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• drugą, zawierającą moduły komunikacyjne oraz router eWON współpracujący z HMI, 

umożliwiające integrację systemu i wymianę danych w czasie rzeczywistym (Rysunek 4.26). 

Rysunek 4.26. Szafa sterownicza systemu pakowania z modułami komunikacyjnymi OPC UA i routerem eWON 

współpracującym z panelami HMI (opracowanie własne na podstawie danych udostępnionych przez 

przedsiębiorstwo). 

 Równolegle dane były przekazywane do interfejsu aplikacji poglądowej, który umożliwiał 

operatorom bieżącą ocenę stanu maszyny. Na ekranach HMI prezentowano aktualne wartości 

parametrów, takich jak temperatura, ciśnienie czy status cyklu. Rejestrowane dane były automatycznie 

archiwizowane lokalnie oraz na serwerze FTP, z możliwością eksportu do arkuszy Excel. Przykład 

ekranu archiwizacji przedstawiono na Rysunku 4.27. 

Rysunek 4.27. Ekran archiwizacji danych z funkcją eksportu do arkuszy Excel w module nadzorowania 

„nieszczelności II” (opracowanie własne). 
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Zbiór danych zapisanych w formacie umożliwiającym dalsze analizy przedstawiono na Rysunku 4.28. 

Rysunek 4.28. Zarchiwizowane dane operacji pakowania w formacie umożliwiającym analizę statystyczną  

i walidacyjną w module nadzorowania „nieszczelności II” (opracowanie własne). 

 Etapy cyfryzacji i wdrożenia warstwy akwizycji danych przedstawiono syntetycznie na Rysunku 

4.29. Schemat obejmuje pełny cykl od identyfikacji ograniczeń systemu producenta, przez instalację  

i integrację sprzętu komunikacyjnego, aż po uruchomienie rejestracji, eksportu danych i ich walidację  

w warunkach rzeczywistej eksploatacji. 

Rysunek 4.29. Etapy cyfryzacji i wdrożenia warstwy akwizycji danych w module nadzorowania „nieszczelności 

II” (opracowanie własne). 

2. Warstwa analityczna stanowiła kluczowy element modułu nadzorowania „nieszczelności II”, 

którego zadaniem było przetwarzanie danych procesowych zarejestrowanych w warstwie akwizycji 

oraz nadanie im wartości predykcyjnej. O ile akwizycja zapewniała ciągłe pozyskiwanie i archiwizację 

parametrów technologicznych, o tyle warstwa analityczna umożliwiała identyfikację zależności 
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pomiędzy tymi wartościami a występowaniem nieszczelności. Jej zasadniczym celem było stworzenie 

narzędzia umożliwiającego prognozowanie ryzyka powstawania wyrobów niezgodnych w czasie 

rzeczywistym. Zastosowany model decyzyjny oparty na regresji logistycznej pozwalał nie tylko 

prognozować potencjalne defekty, ale także ilościowo oceniać wpływ poszczególnych zmiennych na 

ryzyko utraty szczelności. 

 Budowa modelu predykcyjnego w ramach modułu nadzorowania „nieszczelności II” wymagała 

zgromadzenia i uporządkowania danych procesowych w sposób zapewniający ich wiarygodność oraz 

reprezentatywność dla analizowanego zjawiska. Dane te zostały pozyskane w warstwie akwizycji, która 

umożliwiła bieżące monitorowanie pracy maszyny pakującej i rejestrację kluczowych parametrów 

technologicznych w czasie rzeczywistym. Integralnym elementem układu pomiarowego był analizator 

gazowy, wykorzystywany do niszczących pomiarów zawartości tlenu w opakowaniach. Wyniki tych 

badań stanowiły etykiety referencyjne, na podstawie których oceniano poprawność predykcji  

w warstwie analitycznej. 

 Łącznie zgromadzono 174 pełne obserwacje procesowe, obejmujące zestawy wartości 

krytycznych parametrów technologicznych oraz odpowiadające im wyniki pomiarów tlenu. 

Fragment zestawu danych źródłowych przedstawiono w Załączniku Z.5. Zbiór danych został 

podzielony na dwie części: 

• 80% przeznaczono do budowy modelu predykcyjnego (zbiór treningowy), 

• 20% wykorzystano w celu weryfikacji skuteczności modelu (zbiór testowy). 

 W wyniku identyfikacji krytycznych parametrów procesu do konstrukcji modelu regresji 

logistycznej wybrano trzy zmienne niezależne. 

• temperatura zgrzewania [°C], 

• ciśnienie bezwzględne w komorze pakującej [mbar], 

• wydajność linii [szt./min]. 

 Jako zmienną zależną przyjęto klasę wyrobu określającą jego zgodność jakościową: 

• 0 – wyrób zgodny (OK) 

• 1 – wyrób niezgodny, definiowany jako przekroczenie dopuszczalnej zawartości tlenu resztkowego 

na poziomie 1,0%. (NOK) 

 Tak przygotowany zbiór danych umożliwił przeprowadzenie analizy regresji logistycznej, której 

celem było wyznaczenie zależności między wartościami kluczowych parametrów procesu  

a prawdopodobieństwem wystąpienia nieszczelności opakowania. Opracowanie modelu predykcyjnego 

rozpoczęto od sformułowania klasycznej postaci funkcji regresji logistycznej, opisującej 
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prawdopodobieństwo wystąpienia zdarzenia binarnego w zależności od wartości zmiennych 

objaśniających. Ogólna postać modelu przyjmuje formę: 

P(Y = 1|T, P, C) =
exp(α0 + αtempT + αpressureP + αcapacityC)

1 + exp(α0 + αtempT + αpressureP + αcapacityC)
 

 gdzie: 

• Y=1 oznacza wystąpienie niezgodności (przekroczenie 1,0% O₂), 

• Y=0 oznacza zgodny wyrób. 

 W analizie uwzględniono trzy główne zmienne niezależne: 

• T – temperatura zgrzewania [°C], 

• P – ciśnienie bezwzględne w komorze pakującej [mbar], 

• C – wydajność linii [szt./min]. 

 Do analizy wykorzystano środowisko obliczeniowe R. Wbudowane w środowisku funkcje 

umożliwiły zarówno budowę i dopasowanie modelu, jak i generowanie wskaźników jakości 

klasyfikacji. W ramach procedury walidacyjnej zwrócono szczególną uwagę na zdolność modelu do 

identyfikacji przypadków potencjalnych niezgodności, co miało kluczowe znaczenie w kontekście 

ograniczenia badań niszczących. Na podstawie danych treningowych oszacowano współczynniki 

modelu regresji logistycznej, które zestawiono w Tabeli 4.3. 

Tabela 4.3. Parametry regresji logistycznej. 

Zmienna 

  

Wartość estymowana Std. Error z value Pr(>|z|) 

Intercept -716.91 393.62539 -1.82129 0.06856 

Temperatura 4.30312 2.41505 1.78179 0.07478 

Ciśnienie 0.09620 0.03522 2.73123 0.00631 

Wydajność 0.48815 0.10604 4.60334 0.00000 

Opracowanie własne. 

 Interpretacja współczynników wskazała, że wszystkie trzy zmienne wykazują pozytywny wpływ na 

prawdopodobieństwo wystąpienia „nieszczelności II”. Fluktuacje w wartościach temperatury 

zgrzewania, ciśnienia w komorze pakującej oraz wydajności linii wiązały się ze wzrostem 

prawdopodobieństwa powstawania mikronieszczelności. Uzyskane wyniki potwierdziły, że przyjęty 

zestaw zmiennych jest adekwatny do opisu zjawiska i umożliwia skuteczną predykcję wyrobów 

niezgodnych na podstawie bieżących parametrów procesu. Ocena jakości opracowanego modelu 

regresji logistycznej została przeprowadzona na zbiorze testowym obejmującym 20% próbek. Proces 

walidacji polegał na porównaniu przewidywanej klasy wyrobu (zgodny/niezgodny) z faktycznym 
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wynikiem pomiaru resztkowego tlenu w opakowaniu. Na tej podstawie opracowano macierz pomyłek 

(Tabela 4.4). Ostatecznie w ocenie klasyfikacji wykorzystano 27 obserwacji. 

Tabela 4.4. Macierz pomyłek – zbiór testowy. 

  Rzeczywiste: zgodne Rzeczywiste: niezgodne 

Przewidziane: zgodne 13 3 

Przewidziane: niezgodne 2 9 

Opracowanie własne. 

 Analiza macierzy pomyłek pozwoliła stwierdzić, że model w znacznym stopniu prawidłowo 

rozróżnia wyroby zgodne i niezgodne, choć w części przypadków pojawiały się błędne klasyfikacje. 

Aby uzyskać pełniejszą ocenę jakości opracowanego modelu, obliczono zestaw miar statystycznych 

powszechnie stosowanych w ocenie modeli. Wskaźniki te obejmują zarówno dokładność ogólną, jak  

i parametry bardziej szczegółowe: czułość, swoistość, precyzję oraz wartość predykcyjną negatywną. 

Dzięki temu możliwe było nie tylko określenie odsetka poprawnie sklasyfikowanych obserwacji, lecz 

także ocena zdolności modelu do wykrywania przypadków niezgodnych, co z punktu widzenia 

nadzorowania jakości ma kluczowe znaczenie. Tabela 4.5 przedstawia zestawienie uzyskanych 

wartości wskaźników jakości klasyfikacji. 

Tabela 4.5. Wskaźniki jakości klasyfikacji. 

Wskaźnik Wynik Charakterystyka 

Accuracy (dokładność) 81,50% 
Odsetek wszystkich przypadków poprawnie 

sklasyfikowanych przez model. 

Sensitivity (czułość) 75,00% 
Odsetek wyrobów niezgodnych wykrytych 

jako niezgodne 

Specificity (swoistość) 86,70% 
Odsetek wyrobów zgodnych rozpoznanych 

jako zgodne 

Precision (precyzja) 81,80% 
Odsetek przypadków zakwalifikowanych jako 

niezgodne, które faktycznie były niezgodne 

Negative Predictive Value (NPV) 81,30% 
Odsetek przypadków zakwalifikowanych jako 

zgodne, które faktycznie były zgodne 

Opracowanie własne. 

 Uzyskane wyniki potwierdzają wysoką skuteczność predykcyjną modelu, szczególnie w zakresie 

identyfikacji wyrobów niezgodnych, co ma istotne znaczenie dla prognozowania mikronieszczelności. 

Dodatkowym uzupełnieniem analizy były wykresy pudełkowe obrazujące rozkład trzech kluczowych 

zmiennych niezależnych: temperatury zgrzewania, ciśnienia w komorze pakującej i wydajności linii  

w podziale na wyroby zgodne i niezgodne (Rysunek 4.30-4.32). Analiza wykresów wskazuje, że 

wystąpienie niezgodności jest skorelowane z przekroczeniem górnych wartości kluczowych 

parametrów procesu, przy czym najsilniejszą dyskryminację uzyskano dla zmiennej opisującej 

wydajność linii. 
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Rysunek 4.30. Zróżnicowanie względem ciśnienia bezwzględnego w komorze pakującej (opracowanie własne). 

Rysunek 4.31. Zróżnicowanie ze względu na temperaturę zgrzewania (opracowanie własne). 

Rysunek 4.32. Zróżnicowanie ze względu na wydajność linii (opracowanie własne). 
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 Dla pogłębionej oceny jakości klasyfikacji wykorzystano krzywą ROC (Receiver Operating 

Characteristic), której analiza pozwala na ocenę zdolności dyskryminacyjnej modelu przy 

zmieniających się progach decyzyjnych. Krzywa ROC opracowanego modelu znajduje się powyżej linii 

losowej klasyfikacji, a pole pod krzywą (AUC) osiągnęło wartość około 0,85, co świadczy o wysokiej 

skuteczności w rozróżnianiu wyrobów zgodnych i niezgodnych (Rysunek 4.33). 

Rysunek 4.33. Wykres ROC dla modelu regresji logistycznej (opracowanie własne). 

3. W warstwie decyzyjnej ostatecznym rezultatem opracowania modelu regresji logistycznej było 

stworzenie narzędzia predykcyjnego umożliwiającego wczesną identyfikację zwiększonego ryzyka 

wystąpienia mikronieszczelności w procesie konfekcjonowania. Na podstawie oszacowanych 

parametrów modelu sformułowano równanie pozwalające obliczać prawdopodobieństwo wystąpienia 

niezgodności w zależności od bieżących wartości kluczowych zmiennych technologicznych: 

P(Y = 1) =
exp(−716,91 + 4,30 ⋅ T + 0,0962 ⋅ P + 0,4882 ⋅ C)

1 + exp(−716,91 + 4,30 ⋅ T + 0,0962 ⋅ P + 0,4882 ⋅ C)
 

gdzie: 

• T – temperatura zgrzewania [°C], 

• P – ciśnienie bezwzględne w komorze pakującej [mbar], 

• C – wydajność linii [szt./min], 

• P(Y=1) – prawdopodobieństwo zakwalifikowania wyrobu jako niezgodnego. 

 Dla celów operacyjnych równanie zostało zaimplementowane w arkuszu kalkulacyjnym, co 

pozwalało na szybkie obliczanie wartości P(Y=1) dla pojedynczych pomiarów procesowych. Ponadto 

opracowano funkcje w aplikacji systemu nadzorowania, który automatycznie przetwarza dane z linii 

pakującej w czasie rzeczywistym. Dzięki temu operatorzy otrzymują natychmiastowe powiadomienia  

o zwiększonym ryzyku niezgodności i mogą szybko podjąć działania korygujące np. w zakresie 

parametrów procesu. W analizowanym procesie kluczowe znaczenie miało przyjęcie odpowiedniego 
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progu decyzyjnego, który umożliwia rozróżnienie wyrobów zgodnych i potencjalnie niezgodnych. Na 

podstawie przeprowadzonych badań przyjęto, że wartość graniczna P = 0,9 zapewnia skuteczne 

rozdzielenie obu grup, a reguły decyzyjne przyjęto w postaci: 

• P ≤ 0,9 – wyrób traktowany jako zgodny, co pozwala na odstąpienie od badań niszczących 

zawartości tlenu. 

• P > 0,9 – wyrób klasyfikowany jako potencjalnie niezgodny i kierowany do dodatkowej weryfikacji 

poprzez pomiar na zawartość tlenu, z uwagi na ryzyko wystąpienia mikronieszczelności 

prowadzącej do przekroczenia dopuszczalnego poziomu tlenu. 

 Tak skonstruowana warstwa decyzyjna umożliwiła praktyczne zastosowanie modelu predykcyjnego 

w warunkach przemysłowych. 

4. Warstwa wizualizacyjna pełniła funkcję interfejsu pomiędzy systemem nadzorowania a operatorem 

linii pakującej oraz personelem działu utrzymania ruchu. Jej zadaniem było udostępnianie w czasie 

rzeczywistym informacji o stanie procesu, odchyleniach od wartości referencyjnych oraz wynikach 

analiz predykcyjnych. Dane gromadzone w warstwie akwizycji i przetwarzane w warstwie analitycznej 

były prezentowane na ekranach paneli operatorskich HMI. Interfejs aplikacji umożliwiał bieżący 

podgląd kluczowych parametrów procesu, takich jak: 

• liczba wsadów i średnia wydajność linii [szt./min], prędkość przenośnika i parametry docisku, 

• temperatura poszczególnych grzałek elementów zgrzewających wraz z wartością zadaną, 

• ciśnienie bezwzględne w komorze pakującej, czas zgrzewania,  

• parametry materiałowe, takie jak napięcie folii czy ustawienia programu. 

 Przykładowy ekran aplikacji poglądowej przedstawiono na Rysunku 4.34. Widoczny jest na nim 

zestaw parametrów prezentowanych w czasie rzeczywistym, co umożliwia operatorowi natychmiastową 

ocenę stanu linii i podjęcie działań korygujących w przypadku przekroczenia progów alarmowych. 
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Rysunek 4.34. Interfejs aplikacji systemu dla modułu nadzorowania „nieszczelności II” (opracowanie własne na 

podstawie danych udostępnionych przez przedsiębiorstwo). 

Model wsparcia diagnostycznego 

 W wyniku prac nad modułem nadzorowania „nieszczelności II” oraz badań nad modelem 

predykcyjnym opartym na regresji logistycznej uzyskano dodatkowy, nieprzewidziany na etapie 

planowania badań rezultat w postaci opracowania modelu wsparcia diagnostycznego. Podczas 

szczegółowej analizy danych zarejestrowanych w warstwach akwizycji i analitycznej zaobserwowano 

rzadkie, lecz powtarzające się anomalie w przebiegach temperatur elementów zgrzewających. Zjawisko 

to skłoniło do pogłębionej analizy statystycznej, której celem było powiązanie stabilności 

temperaturowej z występowaniem nieszczelności opakowań. W ramach badań diagnostycznych 

przeprowadzono statystyczne opracowanie danych temperaturowych pięciu grzałek linii pakującej  

w odniesieniu do wyników pomiarów zawartości tlenu w opakowaniach. Dla każdej grzałki obliczono 

podstawowe parametry opisowe, obejmujące średnią, medianę, odchylenie standardowe oraz wartości 

skrajne (minimum i maksimum). Analogiczne wskaźniki określono dla wyników pomiarów tlenu, co 

umożliwiło powiązanie stabilności temperaturowej z jakością zgrzewania i szczelnością opakowań. 

Zestawienie kluczowych parametrów pracy grzałek oraz odpowiadających im wyników pomiarów 

resztkowej zawartości tlenu przedstawiono w Tabeli 4.6. Porównanie to stanowi podstawę do dalszej 

interpretacji zależności pomiędzy zmiennością temperatur a ryzykiem powstawania 

mikronieszczelności. 
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Tabela 4.6. Porównanie statystyczne parametrów temperatury grzałek i wyników zawartości tlenu. 

Wskaźnik 
Grzałka nr 

1 

Grzałka nr 

2 

Grzałka nr 

3 

Grzałka nr 

4 

Grzałka nr 

5 

Nastawa temperatury [°C] 163 163 163 163 163 

Średnia temperatura [°C] 162,941 162,928 162,964 162,945 162,854 

Odchylenie standardowe 

temp. [°C] 
0,167 0,188 0,240 0,189 1,209 

Mediana temperatury [°C] 163,000 163,000 163,000 163,000 163,000 

Min. temperatura [°C] 162,400 162,300 162,100 162,300 140,400 

Średnia resztki tlenowej [%] 0,647 0,816 0,803 0,826 1,114 

Mediana resztki tlenowej [%] 0,610 0,805 0,770 0,810 0,750 

Odchylenie standardowe 

resztki tlenowej [%] 
0,241 0,318 0,259 0,219 2,669 

Max. resztka tlenowa [%] 1,330 1,500 1,410 1,500 19,500 

Opracowanie własne. 

 Analiza danych zestawionych w Tabeli 4.6 jednoznacznie wskazuje, że grzałka nr 5 znacząco 

odbiega od pozostałych pod względem odchylenia standardowego temperatury oraz wartości 

minimalnej. Tak duża zmienność temperaturowa sugeruje okresową utratę stabilności cieplnej, która 

może być konsekwencją uszkodzenia elementu grzejnego lub nieprawidłowości w jego układzie 

sterowania. Jednocześnie zaobserwowano, że to właśnie grzałka nr 5 charakteryzuje się największym 

odchyleniem standardowym wyników resztkowej zawartości tlenu (2,669 %) oraz wartością 

maksymalną na poziomie 19,5 %. Wyniki te jednoznacznie potwierdzają występowanie anomalii 

jakościowych w operacji pakowania i wskazują na bezpośredni wpływ niestabilności temperaturowej 

na szczelność opakowań. Dla pełniejszej interpretacji zależności przygotowano wizualne zestawienie 

zmienności temperatury poszczególnych grzałek z odpowiadającymi im wynikami pomiarów 

resztkowej zawartości tlenu. Wyniki tej analizy przedstawiono na Rysunku 4.35, który umożliwia 

szybką identyfikację źródła nieprawidłowości i podkreśla wyraźny związek pomiędzy zakłóceniami 

stabilności cieplnej a ryzykiem powstawania mikronieszczelności. 
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Rysunek 4.35. Porównanie zmienności temperatury i zawartości tlenu w opakowaniu (opracowanie własne). 

 Analiza statystyczna wykazała, że odchylenie standardowe temperatury grzałek stanowi istotny 

wskaźnik diagnostyczny, pozwalający na identyfikację wczesnych symptomów niestabilności pracy 

elementów grzewczych. Sama wartość średnia lub pojedynczy wynik pomiaru nie są wystarczające do 

wykrycia incydentalnych spadków temperatury, które mogą skutkować utratą szczelności opakowań.  

W celu opracowania modelu wsparcia diagnostycznego zdefiniowano system progów decyzyjnych, 

zestawiony w Tabeli 4.7. 

Tabela 4.7. Progi diagnostyczne odchylenia standardowego temperatury grzałek wraz z charakterystyką stanu 

procesu. 

Próg Wartość Charakterystyka 

Ostrzegawczy 0,5 °C 
wartość odchylenia standardowego wskazująca na początek 

niestabilności temperaturowej. 

Krytyczny 0,7 °C 

wartość odchylenia standardowego, której przekroczenie świadczy o 

statystycznie istotnym odchyleniu od pracy nominalnej zgodnie z zasadą 

3σ, stosowaną w analizie zmienności procesów. 

Opracowanie własne.  

 Logika działania opracowanego algorytmu diagnostycznego została przedstawiona na Rysunku 

4.36 w formie pseudokodu. Algorytm realizuje następujące kroki: 

1. Oblicza odchylenie standardowego temperatury grzałki w zadanym oknie czasowym. 

2. Klasyfikuje stana grzałki na jeden z trzech poziomów: 

• Stabilny (σ ≤ 0,5 °C) 

• Ostrzegawczy (0,5 °C < σ ≤ 0,7 °C), 

• Krytyczny (σ > 0,7 °C). 
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3. Reaguje w zależności od klasyfikacji: 

• rejestracja stanu w logach systemowych, 

• generowanie powiadomień dla operatora i działu UR, 

• w przypadku stanu krytycznego: inicjacja procedury diagnostycznej w celu weryfikacji grzałki 

lub czujnika temperatury. 

Rysunek 4.36. Logika działania modelu wsparcia diagnostycznego (opracowanie własne). 

 Zrealizowane prace potwierdziły, że mikronieszczelności stanowią krytyczne ryzyko jakościowe  

w operacji pakowania, a ich skuteczna kontrola wymaga połączenia podejścia eksperymentalnego, 

cyfryzacji danych i analityki. Przeprowadzone eksperymenty czynne pozwoliły wytypować trzy 

parametry krytyczne oraz wyznaczyć ich limity robocze, co stało się podstawą do zaprojektowania 

warstwy akwizycji zapewniającej pełną rejestrację, identyfikowalność i archiwizację danych 

procesowych. Na tej bazie opracowano w warstwie analitycznej model predykcji mikronieszczelności 

oparty na regresji logistycznej, którego skuteczność potwierdzono na zbiorze testowym i za pomocą 

krzywej ROC. W warstwie decyzyjnej wdrożono praktyczny próg interpretacyjny oraz mechanizm 

obliczania prawdopodobieństwa w systemie nadzorowania, co umożliwiło ograniczenie liczby badań 

niszczących i skrócenie czasu reakcji na odchylenia. Warstwa wizualizacyjna udostępnia wyniki  

w czasie rzeczywistym w postaci czytelnych ekranów HMI, wspierając operatorów i służby UR w pracy 

bieżącej. Dodatkowym rezultatem, powstałym w toku analiz, jest model wsparcia diagnostycznego 

oparty na zmienności temperatury grzałek, który zwiększa niezawodność nadzoru poprzez wczesne 

wykrywanie symptomów niestabilności procesu. Całość modułu tworzy spójne rozwiązanie, 

przenoszące kontrolę szczelności z poziomu wyrywkowych badań niszczących na poziom predykcyjnej 

oceny ryzyka opartej na danych rzeczywistych. 
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4.4. Moduł nadzorowania etykiet i ich treści 

 Operacja etykietowania jako ostatnia operacja procesu konfekcjonowania, ma kluczowe znaczenie 

dla zapewnienia identyfikowalności oraz zgodności wyrobu z wymaganiami prawnymi, jakościowymi 

i logistycznymi. Analiza reklamacji potwierdziła, że najczęściej występujące problemy to brak etykiety, 

błędne lub niepełne dane oraz obniżona jakość nadruku i kodów kreskowych, co utrudnia automatyczną 

identyfikację partii. 

 W przeciwieństwie do wcześniejszych modułów, w których konieczne było opracowanie 

dedykowanych modeli analitycznych, tutaj wystarczające okazało się wykorzystanie sprawdzonych 

narzędzi wizyjnych. Ich wybór uzasadniała prostota integracji, możliwość pracy w czasie rzeczywistym 

oraz zgodność z obowiązującymi normami jakości. Zastosowanie technik OCR do rozpoznawania 

znaków alfanumerycznych, analizy kodów i metod segmentacyjnych umożliwiło jednoznaczną 

weryfikację treści i położenia etykiet bez potrzeby rozwijania bardziej złożonych algorytmów. 

 Od modułu oczekiwano pełnej automatyzacji procesu weryfikacji etykiet w trzech obszarach: 

obecności etykiety, poprawności nadruku oraz jakości kodów. Celem było zastąpienie ręcznej kontroli 

wyrywkowej, ograniczenie ryzyka reklamacji oraz stworzenie bazy danych do analiz skuteczności 

procesu drukowania i aplikacji etykiet. 

1. Warstwa akwizycji w module nadzorowania etykiet i treści została oparta na tej samej 

infrastrukturze wizyjnej, której szczegółowy opis przedstawiono w podrozdziale 4.2 dotyczącym 

nadzorowania „nieszczelności I” (Rysunek 4.6 oraz Tabela 4.1). Stanowisko wizyjne, zintegrowane  

z linią konfekcjonowania, umożliwiało jednoczesną rejestrację obrazów służących zarówno do kontroli 

szczelności, jak i do weryfikacji etykiet. Kamery przemysłowe wraz z dedykowanym oświetleniem 

LED zapewniały stabilne warunki akwizycji obrazu oraz synchronizację z transporterem, co 

gwarantowało rejestrację każdej jednostki wyrobu w sposób powtarzalny i jednoznaczny. W kontekście 

modułu etykietowania pozyskiwane dane obejmowały przede wszystkim obrazy obszarów etykiety 

zdefiniowane jako ROI (Region of Interest). Dla każdego wyrobu rejestrowano fragmenty nadruku 

z numerem partii i terminem przydatności, kody, a także pola nadruku wykorzystywane do analizy 

kompletności i poprawności położenia etykiety. Każdy obraz otrzymywał znacznik czasu i przypisanie 

do partii produkcyjnej, co umożliwiało pełną identyfikowalność w dalszych etapach analizy. 

Zgromadzone dane były nie tylko podstawą do bieżącej inspekcji jakości, lecz także archiwizowano 

je w centralnym repozytorium systemu nadzorowania. Tworzyło to źródło materiału porównawczego 

do badań statystycznych nad skutecznością procesu drukowania i aplikacji etykiet oraz stanowiło bazę 

danych do dalszych analiz rozwojowych systemu. 

2. W warstwie analitycznej modułu nadzorowania etykiet i treści zastosowano zestaw 

wyspecjalizowanych narzędzi inspekcji wizyjnej, umożliwiających jednoczesną ocenę obecności 
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etykiety, poprawności nadruku oraz jakości kodów kreskowych. Konfiguracja narzędzi została 

dostosowana do specyfiki procesu i obejmowała trzy główne komponenty: 

• OCR (Optical Character Recognition) – narzędzie do rozpoznawania znaków alfanumerycznych 

nadrukowanych na etykiecie, takich jak numer partii czy data przydatności do spożycia. Analiza 

prowadzona była w zdefiniowanych polach ROI, w których system segmentował znaki i oceniał 

ich czytelność na podstawie parametrów kontrastu i jasności. Rezultaty przykładowej konfiguracji 

przedstawiono na Rysunku 4.37. 

Rysunek 4.37. Interfejs konfiguracji narzędzia OCR do odczytu oznaczeń alfanumerycznych z etykiety 

wyrobu (opracowanie własne). 

• 2D Code Analysis – narzędzie do odczytu i oceny jakości kodów dwuwymiarowych (DataMatrix, 

QR). Oprócz poprawności odczytu system umożliwiał raportowanie wskaźników jakości zgodnie  

z normą ISO/IEC 15415, co miało istotne znaczenie zarówno dla praktycznej oceny stabilności 

nadruku, jak i walidacji procesu w kontekście wymagań normatywnych. Konfigurację 

przykładowego pola detekcji zaprezentowano na Rysunku 4.38. 

Rysunek 4.38. Konfiguracja narzędzia 2D Code Analysis do odczytu i weryfikacji kodów DataMatrix na etykiecie 

(opracowanie własne). 
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• Blob Finder – algorytm do detekcji obecności i poprawności położenia nadrukowanej treści. 

Segmentacja obrazu na obszary o jednorodnym kontraście umożliwiała identyfikację przesunięć, 

obrotów lub częściowych braków nadruku. Narzędzie to sprawdzało się szczególnie przy 

wykrywaniu ubytków lub deformacji znaków. Przykład działania przedstawiono na Rysunku 4.39. 

Rysunek 4.39. Wykorzystanie narzędzia Blob Finder do oceny jakości i ciągłości nadruku znaków na opakowaniu 

(opracowanie własne). 

3. W warstwie decyzyjnej modułu nadzorowania etykiet i treści zdefiniowano jednoznaczną logikę 

klasyfikacji wyrobów, opartą na trzech kryteriach jakościowych: 

• obecności etykiety, 

• poprawności treści OCR, 

• jakości kodu 2D. 

 Wyroby kwalifikowano jako zgodny (OK) wyłącznie wtedy, gdy wszystkie kryteria zostały 

spełnione. Niespełnienie któregokolwiek z nich skutkowało klasyfikacją jako NOK i przekazaniem 

sygnału do układu odrzutu. Schemat logiki działania modułu zaprezentowano na Rysunku 4.40.  

Rysunek 4.40. Schemat logiki działania modułu kontroli etykiet (opracowanie własne). 
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 W przypadku klasyfikacji NOK system automatycznie generował sygnał na wyjściu cyfrowym 

sterującym modułem odrzutu. Zastosowano deterministyczny podział funkcji portów: 

• IO3: sygnał dla wyrobu zgodnego (All passed), 

• IO5: sygnał aktywowany przy dowolnej niezgodności (Any fail), 

• IO4, IO6: linie pomocnicze, pełniące rolę sygnałów informacyjnych o zakończeniu inspekcji. 

 Przykładową konfigurację wyjść cyfrowych przedstawiono na Rysunku 4.41.  

Rysunek 4.41. Konfiguracja wyjść cyfrowych dla modułu analizy etykiet (opracowanie własne). 

 Tak zdefiniowana warstwa decyzyjna umożliwiała zamknięcie pętli jakościowej od rejestracji 

obrazu, poprzez analizę treści etykiety, aż po deterministyczną decyzję o przekazaniu wyrobu do 

dalszego etapu lub jego eliminacji z procesu. 

4. Warstwa wizualizacyjna modułu nadzorowania etykiet i treści została zaprojektowana w taki 

sposób, aby zapewnić operatorowi natychmiastowy dostęp do wyników inspekcji w czasie 

rzeczywistym oraz umożliwić pełną kontrolę nad procesem. Aplikacja operatorska prezentowała nie 

tylko rezultat analizy każdej jednostki, lecz także zestawienia statystyczne, obejmujące liczbę wyrobów 

zgodnych i niezgodnych, wskaźnik skuteczności (Passing Rate) oraz historię wyników dla danej partii. 

 System wizualizacji umożliwiał podgląd obszarów analizy ROI wraz z zaznaczonymi polami 

inspekcji OCR i kodów 2D, co ułatwiało identyfikację przyczyny decyzji NOK. Interfejs wyposażono 

w sygnalizację kolorystyczną (zielony oznacza wyrób zgodny, czerwony oznacza wyrób niezgodny) 

oraz funkcje konfiguracyjne pozwalające operatorowi dostosować parametry detekcji. 
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 Przykładowy ekran aplikacji operatorskiej przedstawiono na Rysunku 4.42. Widoczny jest na nim 

panel z obrazem kontrolowanego wyrobu, zaznaczonym polem etykiety oraz zestawieniem liczbowym 

obejmującym całkowitą liczbę próbek, liczbę wyrobów zgodnych i odrzuconych, a także procentowy 

wskaźnik skuteczności procesu. 

Rysunek 4.42. Interfejs wizualizacji wyników inspekcji etykiet (opracowanie własne). 

 Dzięki takiej organizacji warstwy wizualizacyjnej operator miał możliwość szybkiego 

podejmowania decyzji korygujących, a równocześnie system automatycznie gromadził dane  

w repozytorium, co zapewniało podstawę do analiz retrospektywnych i raportów jakościowych. 

4.5. Moduł nadzorowania odrzutu wyrobów niezgodnych 

 Moduł odrzutu stanowi ostatni element zintegrowanego systemu nadzorowania i odpowiada za 

fizyczne usuwanie z linii produkcyjnej wyrobów niezgodnych. W przeciwieństwie do poprzednich 

modułów, które koncentrują się na wykrywaniu określonych niezgodności w poszczególnych 

operacjach (naważanie, pakowanie, etykietowanie), odrzutnik obejmuje swoim działaniem wyniki 

wszystkich operacji procesu konfekcjonowania. Oznacza to, że każda jednostka zaklasyfikowana 

jako NOK, niezależnie od rodzaju stwierdzonej wady, musi zostać automatycznie wyeliminowana  

z dalszego strumienia produkcyjnego. Odrzut jest kluczowy, ponieważ nawet skuteczna inspekcja nie 

gwarantuje skuteczności, jeżeli wadliwy wyrób nie zostanie odseparowany od wyrobów zgodnych. 

Zidentyfikowany problem dotyczył sytuacji, w których pomimo poprawnej klasyfikacji, wyroby 

niezgodne mogły trafiać do dalszych etapów procesu logistycznego, powodując reklamacje, straty 

materiałowe i zakłócenia dystrybucji. Stąd konieczne było wdrożenie mechanizmu deterministycznego, 

zapewniającego pełną powtarzalność reakcji na sygnały z wcześniejszych modułów. 

 Spośród rozważanych technologii odrzutu (m.in. systemy powietrzne, układy mechaniczne, 

manipulatory) zdecydowano się na układ pneumatyczny z siłownikiem szybkiego działania. 

Rozwiązania wykorzystujące sprężone powietrze, choć stosowane w liniach wysokowydajnych, okazały 

się w analizowanym środowisku mniej korzystne z kilku powodów: 
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• generowały wysoki poziom hałasu i dodatkowe zapotrzebowanie na medium energetyczne, 

• wymagały częstej konserwacji dysz i filtrów, 

• charakteryzowały się mniejszą precyzją w przypadku wyrobów o zróżnicowanej masie i kształcie. 

 Zastosowanie siłownika pneumatycznego zapewniło natomiast szybki czas reakcji, wysoką 

powtarzalność i odporność na zmienne warunki pracy w środowisku wdrożeniowym. 

1. W warstwie akwizycji modułu odrzutu kluczowe znaczenie miało zapewnienie jednoznacznej 

synchronizacji działania siłownika pneumatycznego z pozycją tacki na przenośniku. W tym celu 

zastosowano czujniki obecności oraz czujniki pozycjonujące, które umożliwiały precyzyjne 

wykrywanie momentu, w którym wyrób zaklasyfikowany jako NOK osiągał pozycję odrzutnika. Dane 

z tych czujników były następnie przekazywane do sterownika PLC Mitsubishi FX5U, stanowiącego 

podstawę układu sterowania. Integralnym elementem stanowiska była konstrukcja wykonana ze stali 

nierdzewnej, zgodna z wymogami higienicznymi branży. Widok stanowiska odrzutu przedstawiono na 

Rysunku 4.43.  

Rysunek 4.43. Widok stanowiska odrzutu wyrobów niezgodnych z siłownikiem pneumatycznym (opracowanie 

własne). 

 W ramach warstwy akwizycji rejestrowano również dane eksploatacyjne dotyczące liczby wyrobów 

przekazanych do dalszego etapu oraz liczby odrzuconych jednostek. Informacje te były zapisywane w 

systemie nadzorowania i wykorzystywane w kolejnych warstwach. Dodatkowo, aby zapewnić pełną 

kontrolę nad poprawnością procesu, układ akwizycji został powiązany z czujnikiem zapełnienia 

pojemnika odrzutowego, który generował sygnał ostrzegawczy w przypadku osiągnięcia jego 

maksymalnej pojemności. Fragment dokumentacji elektrycznej systemu odrzutu przedstawiono  

w Załączniku Z.4. 
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2. Warstwa analityczna w module odrzutu miała charakter pomocniczy i sprowadzała się do scalania 

sygnałów z poprzedzających modułów nadzorowania oraz do ich synchronizacji z danymi z czujników 

obecności i pozycjonowania opakowania. W ten sposób każdemu wyrobowi przypisywano status 

jakościowy OK lub NOK, który następnie przekazywano do sterownika PLC. Zadaniem tej warstwy 

było więc przygotowanie jednoznacznej informacji wejściowej dla warstwy decyzyjnej, bezpośrednio 

odpowiedzialnej za sterowanie siłownikiem pneumatycznym. 

3. Warstwa decyzyjna przekształca przygotowany w warstwie analitycznej status jednostki 

(OK/NOK), zsynchronizowany z informacją o położeniu tacki, w deterministyczne działanie 

wykonawcze. Zasada jest jednoznaczna: 

• OK → brak akcji wykonawczej, wyrób kontynuuje przepływ, 

• NOK → wygenerowanie impulsu sterującego z PLC i uruchomienie siłownika 

pneumatycznego odrzucającego wyrób na tor odrzutowy. 

 Logikę tę przedstawiono na Rysunku 4.44. 

Rysunek 4.44. Schemat logiki działania modułu odrzutu wyrobów niezgodnych (opracowanie własne). 

 Aby zapewnić powtarzalność i bezpieczeństwo działania, decyzja wykonawcza jest uzależniona 

od spełnienia warunków pomocniczych: 

• potwierdzonej obecności wyrobu w strefie odrzutu (czujnik pozycjonujący), 

• okna czasowego skorelowanego z prędkością przenośnika, 

• braku aktywnych sygnałów E-Stop oraz przepełnienia pojemnika odrzutowego (w takich 

przypadkach następuje blokada impulsu i sygnał alarmowy do operatora).  
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4. Warstwa wizualizacyjna modułu odrzutu pełniła funkcję interfejsu pomiędzy systemem  

a operatorem, zapewniając bieżący podgląd pracy oraz pełną diagnostykę procesu odrzutu 

(Rysunek 4.45). W ramach tej warstwy operator otrzymywał informacje o: 

• liczbie wyrobów zaklasyfikowanych jako OK i NOK, 

• aktualnym stanie pracy siłownika, 

• statusach bezpieczeństwa (np. aktywacja przycisku E-Stop, otwarcie osłon), 

• sygnale czujnika zapełnienia pojemnika odrzutowego, 

• komunikatach alarmowych w przypadku braku synchronizacji lub opóźnienia sygnału decyzyjnego 

Rysunek 4.45. Panel webowy modułu odrzutu wyrobów niezgodnych (opracowanie własne). 

 Wizualizacja była realizowana za pośrednictwem panelu HMI oraz interfejsu webowego, które 

umożliwiały zarówno monitorowanie online, jak i dostęp do danych archiwalnych. Operator mógł  

w prosty sposób przeanalizować historię odrzuconych wyrobów wraz z przyczynami decyzji, co 

zwiększało transparentność systemu i wspierało działania korygujące. Na Rysunku 4.46 przedstawiono 

przykładowe widoki aplikacji operatorskiej, ukazujące sygnały diagnostyczne. 

Rysunek 4.46. Ekran diagnostyczny modułu odrzutu (opracowanie własne). 
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 Tak zorganizowana warstwa wizualizacyjna zapewniała operatorom i służbom utrzymania ruchu 

natychmiastową informację zwrotną o skuteczności odrzutu, ułatwiała podejmowanie decyzji oraz 

umożliwiała dokumentowanie skuteczności eliminacji wyrobów niezgodnych w czasie rzeczywistym. 

4.6. Cyberbezpieczeństwo systemu 

 Efektywność opracowanego systemu nadzorowania nad procesem konfekcjonowania wyrobów 

zależy nie tylko od skuteczności poszczególnych modułów, lecz także od bezpiecznego gromadzenia, 

archiwizacji i ochrony danych procesowych. Z uwagi na wielowarstwową budowę rozwiązania 

obejmującą cyfryzację procesu pakowania i naważania, rejestrację danych z maszyn, analizę szczelności 

opakowań, kontrolę etykietowania oraz obsługę odrzutów opracowano zintegrowaną politykę 

akwizycji i zabezpieczenia danych, obejmującą warstwę sprzętową i programową. 

 W trakcie realizacji projektu konieczna była rozbudowa serwerowni oraz infrastruktury 

bazodanowej, co umożliwiło archiwizację obrazów z kamer wizyjnych, parametrów technologicznych 

pakowania, wyników pomiarów wagowych, logów alarmowych i klasyfikacji wyrobów. Dane 

zapisywane były w sieci wewnętrznej, odizolowanej od Internetu, co minimalizowało ryzyko 

nieautoryzowanego dostępu. Wdrożono także harmonogram kopii zapasowych oraz politykę retencji 

danych, co ogranicza ryzyko utraty informacji i wspiera audyt zgodności. 

 W systemie zastosowano zestaw zabezpieczeń fizycznych i logicznych, obejmujących m.in.: 

• zasilanie awaryjne UPS; 

• firewall sprzętowy i programowy realizujący segmentację sieci; 

• ograniczenie dostępu na podstawie ról użytkowników (operator, kierownik zmiany, 

utrzymanie ruchu, administrator IT); 

• autoryzację adresów IP i rejestrację zdarzeń systemowych, co umożliwiało prowadzenie 

audytów bezpieczeństwa. 

 Dodatkowo ograniczenia dostępu konfigurowano na poziomie każdego modułu, tak aby operator 

mógł jedynie nadzorować bieżącą pracę, kierownik produkcji analizować wskaźniki, a administrator 

miał pełen dostęp do infrastruktury i konfiguracji. Przegląd uprawnień użytkowników realizowano 

okresowo, a w przypadku zmian personalnych stosowano procedurę natychmiastowego cofnięcia 

uprawnień. Tak zaprojektowany model akwizycji i ochrony danych wpisuje się w wymagania 

nowoczesnych systemów nadzorowania, łącząc niezawodność rejestracji danych z wysokim 

poziomem zabezpieczenia przed utratą i ingerencją zewnętrzną. 
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5. Walidacja i ocena działania systemu 

 Walidacja i ocena działania stanowią kluczowy etap badań, umożliwiający obiektywne 

potwierdzenie poprawności implementacji inteligentnego systemu nadzorowania procesu 

konfekcjonowania oraz określenie jego przydatności w warunkach przemysłowych. Walidacja 

modułowa obejmowała weryfikację działania pięciu modułów funkcjonalnych: nadzorowania masy 

porcji, nadzorowania „nieszczelności I”, nadzorowania „nieszczelności II”, nadzorowania etykiet i ich 

treści oraz odrzutu wyrobów niezgodnych. Ocenie poddano również modele analityczne opracowane  

w ramach implementacji: model inspekcji wizyjnej oparty na głębokim uczeniu, model predykcji 

mikronieszczelności opakowań oparty na regresji logistycznej oraz model wsparcia diagnostycznego 

bazujący na analizie zmienności temperatury grzałek. 

 Ocena całościowa systemu została przeprowadzona na rzeczywistych danych operacyjnych z linii 

konfekcjonowania. Analiza obejmowała porównanie wskaźników jakościowych i efektywnościowych 

(m.in. DPMO, OEE, wydajność linii) przed i po wdrożeniu systemu, co pozwoliło jednoznacznie 

określić jego wpływ na stabilność procesu oraz redukcję niezgodności. Uzupełnieniem walidacji była 

analiza SWOT, umożliwiająca identyfikację mocnych i słabych stron systemu, a także ocenę szans  

i zagrożeń związanych z jego eksploatacją i możliwością dalszej adaptacji w innych liniach 

technologicznych. 

5.1. Weryfikacja modułów i modeli 

 Dla modułu nadzorowania masy porcji walidację przeprowadzono ze szczególnym 

uwzględnieniem poprawności działania i dokładności technicznej urządzeń pomiarowych. 

Specyfikacja producenta zakłada dokładność pomiarową na poziomie 1 g, co zostało 

zweryfikowane w ramach kalibracji przy użyciu legalizowanych odważników referencyjnych, 

zgodnych z wymaganiami Ustawy z dnia 7 maja 2009 r. o towarach paczkowanych (Dz.U. 2009 nr 91 

poz. 740). Legalizację odważników potwierdzono w Załącznikach Z.6 i Z.7. W ramach walidacji 

wykonano serię prób kalibracyjnych, które wykazały, że odchylenia od wartości wzorcowych mieściły 

się w granicach błędu metrologicznego urządzenia. Sprawdzono również ciągłość i spójność ścieżki 

danych, weryfikując, czy wartości rejestrowane na urządzeniu pomiarowym, panelu operatorskim 

HMI oraz w raportach systemowych są zgodne i zsynchronizowane w czasie. Nie odnotowano 

rozbieżności przekraczających granicę dokładności pomiarowej, co potwierdziło prawidłowe działanie 

toru akwizycji i rejestracji danych. Dodatkowo walidację przeprowadzono w różnych warunkach 

eksploatacyjnych, przy zmianach prędkości linii, różnych obciążeniach stanowisk i wariantach receptur. 

Moduł zachował stabilność pracy oraz odporność na czynniki zakłócające, takie jak wibracje 

transportera czy zmiany temperatury otoczenia. 

 Dla modułu nadzorowania „nieszczelności I” walidację rozpoczęto od testów konfiguracji 

układu wizyjnego. Sprawdzano wpływ kluczowych parametrów technicznych kamer przemysłowych 
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jak czasu ekspozycji, kontrastu, jasności oraz pola widzenia na jakość rejestrowanych obrazów 

(Rysunek 4.7). Celem było uzyskanie stabilnych i powtarzalnych zdjęć opakowań, niezależnych od 

warunków oświetleniowych i zmienności procesu. Kolejnym etapem była walidacja zapisu obrazów, 

obejmująca: 

• kontrolę poprawności formatu i rozdzielczości plików, 

• weryfikację integralności zapisu w bazie danych, 

• sprawdzenie czy system nie pomija pojedynczych zdjęć przy maksymalnej wydajności linii, 

• testy w warunkach krytycznych (naprzemienne podstawianie opakowań zgodnych  

i niezgodnych, praca na największej prędkości przenośnika). 

 Następnie walidacji poddano algorytmy analizy obrazu. W pierwszej fazie testowano pierwotne 

wersje klasyfikatora, dla których uzyskano wysoką skuteczność na zbiorze treningowym, lecz niższą 

stabilność na zbiorze walidacyjnym. Model ostateczny oparty na konwolucyjnej sieci neuronowej 

(CNN) osiągnął: 

• dokładność 100% na zbiorze treningowym, 97% na zbiorze walidacyjnym przy progu 

ufności 90%, 

• czułość 95% i precyzję 100% dla klasy NOT OK, co potwierdziło minimalną liczbę 

fałszywych alarmów. 

 Wyniki ewolucji modeli przedstawiono na podstawie funkcji straty (loss function) dla zbioru 

treningowego i walidacyjnego. Analiza przebiegu wskazała na stabilne dopasowanie modelu 

ostatecznego, bez oznak przeuczenia, co potwierdzono poprzez utrzymywanie niskiej wartości funkcji 

straty dla obu zbiorów (strata na zbiorze walidacyjnym utrzymywała się w granicach 0,2–0,4). Dla 

pełnej oceny przygotowano macierze pomyłek zarówno dla modeli pierwotnych, jak i modelu 

ostatecznego. Macierz dla modelu ostatecznego potwierdziła bardzo wysoką skuteczność klasyfikacji  

i szczególnie dobrą zdolność rozpoznawania klasy „NOT OK”. Odrębną częścią walidacji były próby 

w warunkach rzeczywistych. Przeprowadzono dwa scenariusze: 

• test funkcjonalny z podstawianiem próbek wadliwych, gdzie z 10 opakowań niezgodnych  

9 sklasyfikowano poprawnie (90% skuteczności), 

• test symulacji produkcji obejmujący ~900 próbek, który potwierdził stabilność działania 

systemu, spójność zapisu danych oraz odporność na zmienne warunki oświetleniowe. 99% 

poprawnych klasyfikacji w serii ponad 880 próbek 

 W obu scenariuszach monitorowano także czas akwizycji i przetwarzania obrazu, który średnio 

nie przekraczał 250 ms. Wartość ta zapewniała pełną synchronizację z przenośnikiem i nie generowała 

opóźnień w systemie nadrzędnym, co było kluczowe dla integracji modułu wizyjnego z pozostałymi 

elementami systemu nadzorowania. Moduł jako całość, potwierdził odporność na zakłócenia i stabilność 

zapisu danych w bazie. 

 Dla modułu nadzorowania „nieszczelności II” walidację rozpoczęto od weryfikacji akwizycji 

danych procesowych, które stanowiły podstawę dla dalszych analiz diagnostycznych i predykcyjnych. 
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Sprawdzono poprawność odczytów kluczowych zmiennych jak temperatury zgrzewania, ciśnienie 

bezwzględne w komorze pakującej pakującej oraz wydajności linii, porównując wartości 

wyświetlane na panelach operatorskich HMI z zapisami w raportach systemowych oraz w plikach 

przygotowanych jako dane wejściowe dla modelu predykcyjnego. Szczególną uwagę poświęcono 

aspektowi metrologicznemu. Do pomiaru temperatury zastosowano pięć czujników rezystancyjnych 

Pt100 w wykonaniu przemysłowym, zgodnym z normą PN-EN 60751. Każdy tor pomiarowy był 

poddawany rotacyjnej kalibracji, jeden komplet czujników pracował w maszynie, a drugi poddawano 

okresowej kalibracji laboratoryjnej. Kartę katalogową czujników temperatury (DTR) dodano  

w Załączniku Z.3. Integralną częścią układu walidacyjnego był również analizator gazowy OXY 

BABY, stosowany do niszczących pomiarów zawartości tlenu w opakowaniach. Urządzenie było 

regularnie kalibrowane zgodnie z procedurami zakładowymi, a świadectwa wzorcowania i protokoły 

kalibracyjne przedstawiono w Załącznikach Z.9 i Z.10. Pomiary zawartości tlenu traktowano jako 

etykiety referencyjne (ground truth) w ocenie szczelności i skuteczności modelu predykcyjnego. 

Próbki niszczących pomiarów tlenu łączono z obserwacjami procesowymi poprzez znacznik czasu  

i identyfikator partii oraz numer gniazda w cyklu, z uwzględnieniem stałego przesunięcia czasowego 

między zakończeniem zgrzewania a pomiarem. Zakres monitorowanych parametrów oraz 

odpowiadające im progi alarmowe zestawiono w Tabeli 4.2. 

 Na podstawie zgromadzonego zbioru danych (174 obserwacje procesowe) opracowano  

i zwalidowano model predykcji mikronieszczelności oparty na regresji logistycznej. Do walidacji 

wykorzystano klasyczny podział na zbiór treningowy i testowy. Na zbiorze testowym uzyskano 

następujące wyniki: 

• dokładność 81,5%, czułość 75,0%, 

• swoistość 86,7%, precyzja 81,8%, 

• NPV 81,3%, 

• AUC = 0,85. 

 Wartość progu P=0,9 wyznaczono na podstawie analizy krzywej ROC jako kompromis 

maksymalizujący sumę czułości i swoistości przy preferencji ograniczenia fałszywych alarmów. 

Przyjęty próg decyzyjny P = 0,9 umożliwił skuteczne rozróżnianie wyrobów zgodnych i potencjalnie 

niezgodnych, co pozwoliło na redukcję liczby badań niszczących i wczesną identyfikację partii 

obarczonych ryzykiem nieszczelności. 

 Dodatkowym efektem walidacji danych było wykrycie anomalii temperaturowych w pracy 

elementów zgrzewających. Szczegółowa analiza wykazała, że grzałka nr 5 znacząco odbiegała od 

pozostałych pod względem stabilności cieplnej a jej odchylenie standardowe temperatury wynosiło 

1,209 °C, podczas gdy dla pozostałych mieściło się w przedziale 0,167–0,240 °C. Jednocześnie 

przypisane do niej próbki charakteryzowały się podwyższonym odchyleniem resztkowej zawartości 

tlenu (2,669%) oraz wartością maksymalną na poziomie 19,5%. Wyniki te stanowiły podstawę do 

opracowania modelu wsparcia diagnostycznego, opartego na analizie zmienności temperatury grzałek 
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i progach diagnostycznych: 0,5 °C (ostrzeżenie) i 0,7 °C (krytyczny). Ich przekroczenie pozwalało na 

wczesną identyfikację symptomów niestabilności, umożliwiając skierowanie działań serwisowych 

jeszcze przed wystąpieniem istotnych niezgodności jakościowych. 

 Dla modułu nadzorowania etykiet i treści walidację rozpoczęto od weryfikacji działania systemu 

wizyjnego w zakresie rejestracji obrazów etykiet i kodów. Szczegółowe testy konfiguracji kamer 

obejmujące dobór czasu ekspozycji, kontrastu, jasności oraz pól detekcji zostały wcześniej 

przeprowadzone przy okazji walidacji modułu „nieszczelności I”, co pozwoliło na opracowanie 

stabilnych ustawień, zapewniających wysoką jakość zdjęć także w przypadku inspekcji etykiet. 

Weryfikacja w module etykietowania dotyczyła więc przede wszystkim poprawności zapisu obrazów, 

ich rozdzielczości, formatu oraz ciągłości rejestracji przy pracy z maksymalną wydajnością linii. 

Potwierdzono, że system nie pomija próbek, a wszystkie obrazy były jednoznacznie tagowane  

i archiwizowane. Kolejnym elementem walidacji była ocena jakości kodów kreskowych. W tym celu 

przeprowadzono badania w laboratorium Łukasiewicz – ILiM, które pozwoliły na niezależną 

weryfikację klasy czytelności kodów zgodnie z wymaganiami normy ISO/IEC 16022. Wyniki 

uzyskane w badaniach laboratoryjnych zestawiono z interpretacją stosowaną przez oprogramowanie 

systemu nadzorowania, co potwierdziło ich zgodność i wiarygodność działania. Dokumentację z badań 

stanowi Załącznik Z.8. W ramach walidacji przygotowano także celowo zmodyfikowane próbki 

etykiet: brak etykiety, celowo zdeformowane kody, brak lub modyfikacja daty przydatności, pojedyncze 

zmiany liter lub cyfr imitujące typowe błędy pracownicze. System skutecznie identyfikował większość 

z przygotowanych niezgodności. W trakcie walidacji ujawniono jednak problem rozróżniania litery  

„O” i cyfry „0”. Po zdiagnozowaniu tego ograniczenia przeprowadzono dodatkowe douczenie 

algorytmu OCR na nowym zestawie danych, obejmujących alternatywne czcionki. Po tej modyfikacji 

system prawidłowo klasyfikował także przypadki wcześniej błędnie interpretowane. Dodatkowo 

monitorowano czas zapisu i analizy obrazu, nie przekraczał on 250 ms, co było kluczowe dla 

zapewnienia pełnej synchronizacji z przenośnikiem i modułem odrzutu. W testach laboratoryjnych 

moduł osiągnął 100% skuteczności, natomiast w warunkach przemysłowych Passing Rate wyniósł 

99,3% (716 poprawnych odczytów na 721, 5 błędów) 

 Dla modułu nadzorowania odrzutu wyrobów niezgodnych walidacja modułu odrzutu 

obejmowała w pierwszej kolejności weryfikację poprawności synchronizacji układu 

pneumatycznego z prędkościami transporterów oraz współpracę z enkoderem odpowiedzialnym za 

detekcję pozycji produktu na linii produkcyjnej. Kluczowym elementem było sprawdzenie czy 

odrzutnik aktywuje się dokładnie w momencie, gdy niezgodny produkt znajduje się w strefie wyrzutu, 

niezależnie od aktualnej prędkości pracy linii. Równolegle sprawdzano poprawność działania 

czujników obecności i pozycji wyrobu, których zadaniem było inicjowanie sekwencji odrzutu. Testy 

walidacyjne wykazały, że sygnały były stabilne i powtarzalne, a ich czas reakcji nie powodował błędów 

synchronizacyjnych ani pominięć produktów. Kolejnym etapem była weryfikacja funkcjonalna  

w warunkach kontrolowanych. W ramach walidacji podstawiano na przenośniku zarówno wyroby 
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zgodne (OK), jak i niezgodne (NOK), w różnych konfiguracjach przestrzennych i czasowych. Analiza 

obejmowała: 

• naprzemienne podstawianie próbek zgodnych i niezgodnych, 

• sekwencje kilku kolejnych wyrobów NOK, 

• rozmieszczenie niezgodnych próbek na początku, w środku i na końcu serii, 

• pracę przy maksymalnej wydajności linii, symulując najtrudniejsze warunki eksploatacyjne. 

 W każdej z konfiguracji system zapewnił poprawną interpretację próbek: 100% wyrobów zgodnych 

przepuszczono, a 100% wyrobów niezgodnych skierowano do odrzutu.  

 Walidacja poszczególnych modułów oraz modeli wymagała znaczącego nakładu pracy operacyjnej 

i metrologicznej w środowisku produkcyjnym. Zgodnie z przyjętą strategią moduły i modele wdrażano 

sekwencyjnie, co umożliwiało iteracyjne dopracowanie algorytmów i procedur. Największym 

wyzwaniem okazała się cyfryzacja danych procesowych z maszyny pakującej, a więc weryfikacja, 

walidacja i synchronizacja tych danych z odczytami referencyjnymi; prace te stanowiły fundament 

dla modelu predykcyjnego. W module wizyjnym konieczna była rozbudowa bazy danych  

i wielokrotne cykle uczenia, ponieważ modele pierwotne nie zapewniały satysfakcjonujących 

wyników; dopiero kolejne iteracje przyniosły stabilny model końcowy. W module etykietowania 

rozwiązano problem OCR „O” vs „0” poprzez douczenie na nowej czcionce. Z każdego etapu 

walidacyjnego sporządzono raport zgodny z praktyką wdrożeniową, a dla każdego modułu 

opracowano pilotażową instrukcję eksploatacyjną. Podsumowując, walidacja została 

przeprowadzona zgodnie z założeniami, a wyniki potwierdzają przydatność i skuteczność 

poszczególnych modułów oraz modeli w warunkach przemysłowych. 

5.2. Walidacja całościowa na danych operacyjnych 

 W niniejszym podrozdziale przedstawiono wyniki walidacji całościowej, obejmującej działanie 

zintegrowanego systemu nadzorowania procesu konfekcjonowania w warunkach przemysłowych. 

Oceny dokonano na podstawie danych operacyjnych, zestawionych w formie kluczowych wskaźników 

efektywności (KPI) oraz wskaźników jakościowych odnoszących się do poszczególnych operacji 

procesu konfekcjonowania. Analiza porównawcza objęła okres bazowy (2021–2022) oraz okres po 

implementacji systemu (2023–2025), co pozwoliło jednoznacznie określić jego wpływ na jakość, 

stabilność i efektywność linii produkcyjnej. W dalszej części ujęto również aspekt ekonomiczny 

wdrożenia, a końcowe zestawienie wskaźników w formie tabelarycznej umożliwia bezpośrednie 

porównanie wartości parametrów procesowych i KPI przed i po wdrożeniu. 

 Walidację modułu nadzorowania masy porcji przeprowadzono w oparciu o dane operacyjne  

z okresu bazowego (2021–2022) oraz z okresu po implementacji systemu (2023–2024). Analizie 

poddano wskaźniki jakości naważania, stabilność procesu, a także wpływ na straty surowca. Dane 

historyczne jednoznacznie wskazują na poprawę procesu po wdrożeniu zaawansowanych wag 



  

117 

 

platformowych. Jak przedstawiono w Tabeli 5.1, odsetek niedowag spadł z 2,56% (2021) do 0,36% 

(2024), natomiast przeważenia zmniejszyły się z 4,60% do 2,10%. 

Tabela 5.1. Wyniki walidacji procesu naważania: liczba opakowań, masa surowca oraz odsetek niedowag i 

 przeważeń w latach 2021–2024. 

Rok 

produk

cji 

Czas 

produkcji 

(min) 

Zaakceptowane 

opakowania 

(szt.) 

Niedowagi 

(szt.) 

Masa 

całkowita 

(kg) 

Masa 

przeważona 

(kg) 

Niedowag

i (%) 

Przeważenie 

(%) 

 

 

2021 51088 764828 19556 275981 12724 2,56% 4,60%  

2022 107281 1627838 28736 606096 24191 1,77% 4,00%  

2023 68368 870093 7363 335923 7092 0,85% 2,10%  

2024 91678 1351397 4811 532215 11389 0,36% 2,10%  

Opracowanie własne. 

 Na Rysunku 5.1 przedstawiono zmiany w procentowych wartościach przeważeń i niedowag  

w analizowanym okresie czterech lat. Widoczny jest wyraźny trend spadkowy dla obu wskaźników. 

Rysunek 5.1. Wykres zmian odsetka przeważeń i niedowag w latach 2021–2024 (opracowanie własne). 
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 W celu oceny stabilności procesu wykorzystano raporty produkcyjne z lat 2022 i 2024. Analiza 

histogramów rozkładu masy naważania dla badanego wyrobu pozwoliła na dokładne porównanie 

jakości i powtarzalności procesu w tych latach. Raport z 2022 roku wskazuje, że średnia masa produktu 

wynosiła 421,85 g a odchylenie standardowe osiągnęło poziom 18,07 g (Rysunek 5.2). Minimalna masa 

w próbie wyniosła 376,80 g a maksymalna 495,00 g co świadczy o dużym rozrzucie wartości względem 

masy nominalnej wynoszącej 400 g. Zarejestrowano 81 opakowań niedoważonych oraz  

32 przeważone, przy czym przeważenia stanowiły 5,18% całkowitej masy. 

Rysunek 5.2. Histogram rozkładu masy wyrobów: dane z 2022 roku (opracowanie własne). 

 W roku 2024 stabilność procesu uległa znacznej poprawie. Średnia masa wyniosła 403,31 g  

a odchylenie standardowe spadło do 6,71 g. Minimalna masa wynosiła 382,20 g a maksymalna 446,20 

g co oznacza, że rozrzut danych został znacznie zawężony. Nie odnotowano przypadków opakowań 

niedoważonych. Histogram przedstawiony na Rysunku 5.3. pokazuje wyraźne skupienie mas wokół 

wartości docelowej, co świadczy o wysokiej powtarzalności i precyzji modelu nadzorowania masy 

porcji. 

Rysunek 5.3. Histogram rozkładu masy wyrobów: dane z 2024 roku (opracowanie własne). 
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 Analiza wskaźnika strat surowca, rozumianego jako ubytek materiału w procesie naważania, 

stanowi istotny element oceny efektywności technologicznej i gospodarności wykorzystania surowców. 

Zastosowanie zaawansowanych wag platformowych pozwoliło na wyraźne ograniczenie strat 

materiałowych, poprawę powtarzalności oraz zwiększenie stabilności dozowania. W szczególności: 

• Surowiec 1 charakteryzował się początkowo bardzo wysokimi ubytkami, przekraczającymi 20–

30% (Rysunek 5.4). Na przełomie lat 2022 i 2023 odnotowano gwałtowny spadek poziomu strat 

do wartości poniżej 10%. Obserwowany trend świadczy o zwiększonej stabilności operacji oraz 

skuteczniejszym wykorzystaniu surowca dzięki zastosowaniu nowoczesnych technologii 

wagowych. 

Rysunek 5.4. Wskaźnik strat surowca 1 na przestrzeni miesięcy (2021–2023) (opracowanie własne). 

• Surowiec 2 przed wdrożeniem systemu wykazywał wyraźnie dodatnie wskaźniki strat, 

oznaczające nadmiarowy ubytek materiału (Rysunek 5.5). Po implementacji systemu wartości te 

uległy obniżeniu, osiągając wartości ujemne. Taki wynik może wskazywać na wyeliminowanie 

nadmiernych przeważeń oraz dokładniejsze naważanie. 

 

Rysunek 5.5. Wskaźnik strat surowca 2 na przestrzeni miesięcy (2021–2023) (opracowanie własne). 
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• Surowiec 3 w fazie początkowej generował ubytki przekraczające 10% (Rysunek 5.6).  

Po wdrożeniu systemu nastąpiła stabilizacja wskaźnika w zakresie 2–3%. 

Rysunek 5.6. Wskaźnik strat surowca 3 na przestrzeni miesięcy (2022–2023) (opracowanie własne). 

• Surowiec 4 został wprowadzony do produkcji w trakcie implementacji systemu, dlatego nie 

dysponowano danymi porównawczymi z okresu wcześniejszego (Rysunek 5.7). Już od początku 

eksploatacji wskaźnik strat utrzymywał się na stabilnym poziomie w okolicach 0%. 

Rysunek 5.7. Wskaźnik strat surowca 4 na przestrzeni miesięcy (2022–2023) (opracowanie własne). 

 Implementacja modułu nadzorowania masy porcji miała bezpośredni wpływ na eliminację 

problemów zidentyfikowanych, dotyczących niezgodności wyrobów ze specyfikacją, w szczególności 

niedoborów i nadmiarów składników w opakowaniach wynikających z błędów w procesie naważania. 

W badanym środowisku produkcyjnym nieprawidłowości te stanowiły jedną z głównych przyczyn strat 

surowcowych. Wdrożony moduł, integrujący cyfrowe stanowiska wagowe z systemem rejestracji  

i analizy danych, pozwolił na bieżące monitorowanie masy porcji, automatyczną klasyfikację jednostek 

oraz archiwizację wyników w systemie nadzorowania. Na Rysunku 5.8 przedstawiono zmiany we 

wskaźniku DPMO - masa dla lat 2021–2024. 
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Rysunek 5.8. Zmiany wskaźnika DPMO - masa w latach 2021–2024 (opracowanie własne). 

 W roku 2021 wartość wskaźnika DPMO – masa wynosiła 7,6. W 2022 roku nastąpił wzrost do 

poziomu 12,6, co wskazywało na większą liczbę niezgodności związanych z procesem naważania.  

W latach 2023 i 2024 zaobserwowano wyraźny trend spadkowy a wskaźnik DPMO obniżył się kolejno 

do 3,9 oraz 1,4, co potwierdza skuteczność wdrożonego modułu nadzorowania masy porcji i jego wpływ 

na poprawę stabilności procesu. Ocena działania zintegrowanego systemu nadzorowania procesu 

konfekcjonowania w ujęciu całościowym obejmowała analizę wskaźników DPMO w czterech 

kategoriach (masa, etykieta, opakowanie oraz pozostałe), a także wskaźników wydajności linii, OEE  

i wydajności pracy. Analizie poddano dane z okresu bazowego (2021–2022) oraz po wdrożeniu 

systemu (2023–2024), co umożliwiło jednoznaczną ocenę jego wpływu na jakość i efektywność 

procesu. Szczegółowe wyniki zestawiono w Tabeli 5.2, która przedstawia wartości DPMO  

w poszczególnych kategoriach jakościowych w latach 2021–2024. 

Tabela 5.2. Wskaźnik DPMO w poszczególnych operacjach procesu konfekcjonowania (2021–2024). 

DPMO 2021 2022 2023 2024 

DPMO – masa 7,6 12,6 3,9 1,4 

DPMO - etykieta 25,8 15,6 26,3 8,4 

DPMO - opakowanie 27,4 37,9 32,2 9,1 

DPMO - pozostałe 19,8 13,6 9,7 7,0 

DPMO - ogółem 80,6 79,7 73,1 30,2 

Opracowanie własne.  

 Wskaźnik DPMO ogółem, wyliczony dla liczby defektów na milion szans, spadł z poziomu 80,6  

w 2021 roku do 30,2 w roku 2024, co świadczy o znaczącej poprawie jakości końcowego produktu. 

Należy zwrócić uwagę, że wdrożenie poszczególnych modułów systemu następowało etapowo. Moduł 

nadzorowania masy porcji został w pełni uruchomiony na początku 2023 roku, co znalazło 

odzwierciedlenie w gwałtownym spadku liczby niezgodności wagowych już w danych z 2023 roku.  
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Z kolei pozostałe moduły zostały wdrożone w drugiej połowie 2023 roku, dlatego największą poprawę 

w zakresie DPMO dla etykiet i opakowania zaobserwowano dopiero w roku 2024, kiedy system 

pracował w pełnym, zintegrowanym trybie. Zmiany wartości DPMO w poszczególnych kategoriach  

w latach 2021–2024 zilustrowano na Rysunku 5.9. 

Rysunek 5.9. Zmiany wskaźników DPMO dla różnych kategorii w latach 2021–2024 (opracowanie własne). 

 Rysunek 5.10 prezentuje zmienność dziennej wydajności linii konfekcjonowania w okresie od maja 

2022 roku do 2025 roku. Wydajność została wyrażona w jednostkach [szt./min], co umożliwia 

jednoznaczną ocenę tempa pracy niezależnie od długości zmian czy liczby godzin produkcyjnych. 

Pomimo naturalnych wahań charakterystycznych dla specyfiki branży, widoczna jest wyraźna tendencja 

wzrostowa. Średnie roczne wartości wydajności potwierdzają ten trend: 

• 2022: 13,44 szt./min 

• 2023: 13,69 szt./min 

• 2024: 15,04 szt./min 

• 2025: 15,99 szt./min 

 Systematyczny wzrost wydajności obserwowany w analizowanym okresie można uznać za wynik 

wdrożenia inteligentnego systemu nadzorowania. Rozwiązanie to umożliwiło bardziej efektywne 

zarządzanie procesem produkcyjnym, lepsze wykorzystanie dostępności maszyn oraz ograniczenie 

zakłóceń operacyjnych. Wzrost wydajności koreluje z poprawą wartości wskaźnika OEE i jego 

składowych, a także stanowi istotny czynnik wpływający na dalszy wzrost wydajności pracy. 
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Rysunek 5.10. Zmiany wydajności linii produkcyjnej w latach 2022–2025 [szt./min] (opracowanie własne).  

 W kontekście wskaźnika OEE (Overall Equipment Effectiveness), możliwe było precyzyjne 

wyznaczenie trzech składowych wskaźnika OEE: dostępności, wydajności i jakości, opartych na 

rzeczywistych danych produkcyjnych. Warto zaznaczyć, że dane które pozwoliły wyznaczyć OEE były 

rejestrowane dopiero od 2022 roku, co ogranicza możliwość porównań z wcześniejszym okresem,  

w przeciwieństwie do wskaźników związanych ze składowymi DPMO, które były rejestrowane już od 

2021 roku. Tabela 5.3. prezentuje wartości trzech składowych OEE oraz wartość właściwą wskaźnika 

dla lat 2022–2025. Dane te potwierdzają wyraźną tendencję wzrostową: od 51,37% w 2022 roku do 

67,96% w 2025 roku, co stanowi poprawę o ponad 16 punktów procentowych. 

Tabela 5.3. Zmiany wartości wskaźników OEE oraz jego składowych: jakości, dostępności i efektywności  

w latach 2022–2025. 

Rok Jakość Dostępność Efektywność OEE 

2022 93,55% 81,71% 67,20% 51,37% 

2023 98,42% 80,63% 68,45% 54,32% 

2024 98,72% 85,63% 75,02% 63,42% 

2025 98,72% 86,10% 79,95% 67,96% 

Opracowanie własne.  

 Zaobserwowane zmiany wskazują, że największy wpływ na poprawę wskaźnika OEE miało 

zwiększenie dostępności linii oraz stabilizacja tempa pracy. Wysoki i utrzymujący się na stałym 

poziomie wskaźnik jakości potwierdza skuteczność wdrożonych modułów systemu nadzorowania, które 

ograniczyły liczbę wyrobów niezgodnych. Tendencję wzrostową wszystkich składowych oraz wartości 

OEE w latach 2022–2025 przedstawiono na Rysunku 5.11. 
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Rysunek 5.11. Zmiany wskaźników składowych oraz wartości OEE w latach 2022–2025 (opracowanie własne). 

 Końcowym elementem oceny działania systemu nadzorowania procesu konfekcjonowania jest 

analiza wskaźnika wydajności pracy, który przedstawiono w Tabeli 5.4. Wskaźnik ten pozwala na ocenę 

efektywności wykorzystania czasu pracy operacyjnego w ujęciu jednostkowym i jest wprost zależny od 

stopnia automatyzacji, stabilności procesu oraz poziomu ingerencji manualnej. Wskaźnik wydajności 

pracy, wyrażony jako liczba wyprodukowanych jednostek na jedną roboczogodzinę, przedstawiono  

w tabeli dla lat 2021–2024. W analizowanym okresie zaobserwowano wyraźną i systematyczną poprawę 

od 60,4 szt./rb. w 2021 roku do 76,5 szt./rb. w 2024 roku. Oznacza to wzrost efektywności 

wykorzystania czasu pracy o ponad 26%. Poprawa ta świadczy o tym, że każda przepracowana godzina 

została lepiej spożytkowana w stosunku do lat ubiegłych. Kluczowy wpływ miały tu usprawnione 

operacje procesu konfekcjonowania, które ograniczyły konieczność ręcznej kontroli i interwencji 

operatorskich. Mniej czynności manualnych przekładało się bezpośrednio na zwiększoną 

produktywność jednostek roboczych, co jest zgodne z innymi wskaźnikami efektywności 

zaprezentowanymi wcześniej. 

Tabela 5.4. Zmiany wskaźnika wydajności pracy procesu konfekcjonowania w latach 2021–2024  

Rok Wynik Jednostka 

2021 60,4 szt./rb. 

2022 63,5 szt./rb. 

2023 68,7 szt./rb. 

2024 76,5 szt./rb. 

Opracowanie własne. 



  

125 

 

 Podsumowując przeprowadzoną walidację modułów i całego systemu, należy podkreślić, że 

uzyskane wyniki jednoznacznie potwierdzają skuteczność wdrożonych rozwiązań. Każdy z modułów 

od nadzorowania masy porcji, przez nadzorowania szczelności I i II, nadzorowanie etykiet i ich 

treści, aż po moduł odrzutu przyczynił się do eliminacji problemów zidentyfikowanych w pracy. Ich 

integracja w ramach czterowarstwowej architektury (akwizycja, analiza, decyzja, wizualizacja) 

zapewniła spójny przepływ danych i deterministyczne podejmowanie decyzji w czasie rzeczywistym. 

Efektem jest nie tylko redukcja wskaźników DPMO w każdej kategorii jakościowej, ale także znacząca 

poprawa stabilności procesu, zwiększenie wydajności linii, wzrost wskaźnika OEE oraz lepsze 

wykorzystanie czasu pracy. Zmniejszenie strat surowcowych potwierdza, że system spełnił zarówno 

cele jakościowe, jak i ekonomiczne. Tabela 5.5. prezentuje syntetyczne podsumowanie wszystkich 

mierników walidacyjnych, obejmujących zarówno wskaźniki jakościowe (niedoważenia, przeważenia, 

ubytki surowcowe, wartości DPMO w poszczególnych kategoriach), jak i wskaźniki efektywności 

operacyjnej (wydajność linii, dostępność, efektywność i OEE), a także rezultaty modeli predykcyjnych 

i systemów wizyjnych (dokładność, czułość, precyzja, skuteczność detekcji). Tak kompleksowe 

zestawienie umożliwia całościową ocenę wpływu wdrożonego systemu na stabilność, niezawodność  

i ekonomiczną efektywność procesu konfekcjonowania.
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Tabela 5.5. Zestawienie wyników walidacji. 

Opracowanie własne.

Obszar Wskaźnik Opis
Przed 

wdrożeniem

Po 

wdrożeniu
Różnica Jednostka

Średnia masa jednostkowa Średnia masa opakowania z próby 1000 szt. (2022 vs 2024) 421,85 403,31 -18,54 g

Odchylenie standardowe masy Zmienność masy opakowań (2022 vs 2024, próba 1000 szt.) 18,07 6,71 -11,36 g

Odsetek niedoważeń Udział procentowy opakowań poniżej masy deklarowanej (2021/22 vs 2023/24) 2,02 0,55 -1,47 %

DPMO – masa Liczba defektów wagowych na milion jednostek (2022 vs 2024) 12,6 1,4 -11,2 szt.

Łączna masa przeważeń Suma masy surowca w opakowaniach powyżej nominalnej (średnia 2021/22 vs 2023/24) 36 915 18 481 -18 434 kg

Udział przeważeń Procentowy udział przeważeń (2021/22 vs 2023/24) 4,19 2,13 -2,06 %

Ubytki surowcowe – surowiec 1 Odsetek strat surowca 1 20 10 -10 %

Ubytki surowcowe – surowiec 2 Odsetek strat surowca 2 5 0 -5 %

Ubytki surowcowe – surowiec 3 Odsetek strat surowca 3 10 3 -7 %

Ubytki surowcowe – surowiec 4 Odsetek strat surowca 4 n.d. 0 n.d. %

Wydajność linii Średnia liczba zapakowanych opakowań na godzinę (2022 vs 2024) 13,44 15,04 1,6 szt./min

Wydajność linii Średnia liczba zapakowanych opakowań na godzinę (2023 vs 2025) 13,69 15,99 2,3 szt./min

Efektywność Stosunek rzeczywistej wydajności linii do wydajności teoretycznej 67,2 79,95 12,75 %

Dostępność Procent czasu, w którym system był gotowy do pracy 81,71 86,1 4,39 %

Jakość Procent wyrobów spełniających wymagania jakościowe 93,55 98,72 5,17 %

OEE Złożony wskaźnik efektywności (iloczyn dostępności, efektywności i jakości) 51,37 67,96 16,59 %

Regresja logistyczna – Accuracy Dokładność modelu predykcji mikronieszczelności n.d. 81,5 - %

Regresja logistyczna – Sensitivity Czułość modelu n.d. 75 - %

Regresja logistyczna – Specificity Swoistość modelu n.d. 86,7 - %

Regresja logistyczna – Precision Precyzja modelu n.d. 81,8 - %

Regresja logistyczna – NPV Wartość predykcyjna negatywna n.d. 81,3 - %

Regresja logistyczna – ROC Pole pod krzywą ROC n.d. 0,85 - -

DPMO – opakowanie Liczba defektów technologicznych (opakowania) na milion jednostek (2022 vs 2024) 37,9 9,1 -28,8 szt.

Walidacja – pakowanie Skuteczność detekcji wad pakowania w warunkach produkcyjnych n.d. 90 - %

DPMO – etykieta Liczba defektów etykietowych na milion jednostek (2022 vs 2024) 15,6 8,4 -7,2 szt.

Dokładność klasyfikatora Dokładność klasyfikatora obrazu na zbiorze walidacyjnym n.d. 97 - %

Czułość klasyfikatora Wartość czułości z macierzy pomyłek n.d. 95 - %

Precyzja klasyfikatora Wartość precyzji z macierzy pomyłek n.d. 100 - %

Walidacja – etykieta Skuteczność detekcji etykiet w warunkach produkcyjnych n.d. 99 - %

Ogólne Wydajność pracy Średnia liczba opakowań na 1 roboczogodzinę (2021 vs 2024) 60,4 76,5 16,1 szt./rb.

Etykietowanie

Naważanie

Pakowanie
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 Wdrożenie zintegrowanego systemu nadzorowania procesu konfekcjonowania przyniosło także 

wymierne korzyści finansowe, wynikające przede wszystkim z redukcji przeważeń surowca oraz 

możliwości ograniczenia liczby badań niszczących na zawartość tlenu. 

 Po pierwsze, zastosowanie zaawansowanych wag platformowych znacząco poprawiły 

dokładność i powtarzalność operacji naważania, co przełożyło się na wyraźną redukcję strat 

surowcowych. Na potrzeby kalkulacji wyznaczono dwa okresy: 

• Przed wdrożeniem (2021–2022): 

o Łączna liczba wyprodukowanych opakowań: 2 392 666 szt. 

o Łączna masa przeważeń: 36,9 t 

• Po wdrożeniu (2023–2024): 

o Łączna liczba wyprodukowanych opakowań: ok. 2 221 490 szt. 

o Łączna masa przeważeń: 18,4 t 

 Różnica w poziomie przeważenia wyniosła 18,43 tony, co stanowi redukcję o prawie 50% względem 

okresu wcześniejszego. Przy założonej cenie surowca na poziomie 10 zł/kg, daje to łączną oszczędność 

rzędu: 18 434 kg × 10 zł/kg = 184 340 zł. Oszczędności te osiągnięto przy jednoczesnej poprawie jakości 

i stabilności procesu, co zostało potwierdzone spadkiem wartości wskaźnika DPMO - masa. 

 Po drugie, opracowano model predykcji mikronieszczelności opakowań oparty na regresji 

logistycznej, umożliwiający prognozowanie ryzyka przekroczenia dopuszczalnej zawartości tlenu  

w atmosferze ochronnej opakowań. Zastosowanie tego rozwiązania pozwala na ograniczenie liczby 

badań niszczących, które w standardowej procedurze przeprowadza się dla: 

• 2 próbek na początku partii, 

• 2 próbek co godzinę, 

• 2 próbek na zakończenie. 

 Przykładowo, dla partii trwającej 4 godziny daje to 8 prób, co przy wartości jednostkowej produktu 

8 zł oznacza koszt 64 zł na partię. 

• Praca w trybie 1 zmiany (8 godzin dziennie): 

o 16 prób dziennie → 128 zł/dzień 

o 2 688 zł/miesiąc 

o 32 256 zł/rok 

 Analiza danych predykcyjnych wykazała, że dla ok. 75% partii prawdopodobieństwo przekroczenia 

progu resztki tlenu wynosiło P ≤ 0,9, co pozwalałoby na pominięcie badań niszczących bez ryzyka utraty 

jakości. W związku z powyższym można założyć, że szacowane roczne oszczędności wynosić mogą: 

ok. 24 192 zł (przy produkcji dwuzmianowej: do 50 000 zł/rok). 

 W przedstawionych obliczeniach przyjęto uproszczone założenia, zaokrąglenia i uśrednienia, 

dlatego wyniki mogą być obarczone istotnym błędem oszacowania. Celem kalkulacji było jednak 

wskazanie rzędu wielkości korzyści ekonomicznych w dwóch kluczowych obszarach: ograniczenia 
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przeważeń surowca oraz potencjalnego zmniejszenia liczby badań niszczących. Łączne efekty 

finansowe wynikają zarówno z bezpośrednich oszczędności surowcowych, jak i z potencjalnego 

ograniczenia kosztów badań niszczących. Wyniki te jednoznacznie potwierdzają, że wdrożenie 

zintegrowanego systemu nadzoru łączy aspekt jakościowy z ekonomicznym i przekłada się na wymierne 

korzyści dla przedsiębiorstwa. 

5.3. Analiza SWOT implementacji 

 Dla pełniejszej oceny opracowanego i wdrożonego inteligentnego systemu nadzorowania procesu 

konfekcjonowania wyrobów przeprowadzono analizę SWOT (ang. Strengths, Weaknesses, 

Opportunities, Threats) (Tabela 5.6). Podejście to pozwala na identyfikację zarówno mocnych i słabych 

stron rozwiązania, jak i szans rozwojowych oraz potencjalnych zagrożeń w kontekście jego eksploatacji, 

skalowalności oraz zgodności ze standardami branżowymi. Analiza została oparta na wynikach testów, 

walidacji oraz obserwacjach z rzeczywistego środowiska produkcyjnego (Wysocki, 2007; Szmitka, 

2015). 

Tabela 5.6. Analiza SWOT wdrożonego systemu nadzorowania procesu konfekcjonowania. 

CZYNNIKI POZYTYWNE NEGATYWNE 

W
E

W
N

Ę
T

R
Z

N
E

 

Mocne strony (Strengths) Słabe strony (Weaknesses) 

Kompleksowa cyfryzacja operacji 

naważania, pakowania, etykietowania. 

Wysoki poziom złożoności systemu i 

konieczność utrzymania infrastruktury 

IT 

Integracja wielomodułowa: moduł 

nadzorowania masy procji, moduły 

nadzorowania szczelności I i II, moduł 

etykiet i treści, moduł odrzutu oraz modele 

predykcyjne i diagnostyczne 

Wysokie koszty wdrożenia i potrzeba 

stopniowej amortyzacji inwestycji 

Ciągły monitoring i rejestracja danych w 

czasie rzeczywistym, pełna 

identyfikowalność wyrobów 

Wymagania proceduralne w zakresie 

kalibracji wag, czujników i aktualizacji 

algorytmów 

Redukcja wskaźnika DPMO (z 80,6 do 

30,2) 

Konieczność specjalistycznych szkoleń 

personelu w obsłudze modułów 

predykcyjnych i systemów wizyjnych 

Poprawa OEE (z 51,37% do 67,96%) i 

wzrost wydajności linii z 13,44 do 15,99 

szt./min 

Czasowe ryzyko przestojów w 

przypadku awarii krytycznych modułów 

(system wizyjny, odrzut, serwer) 

Redukcja przeważeń surowca o 18,43 t i 

oszczędności ok. 184 tys. zł rocznie 
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Z
E

W
N

Ę
T

R
Z

N
E

 

Szanse (Opportunities) Zagrożenia (Threats) 

Rozszerzenie funkcji predykcyjnych – 

ograniczenie badań niszczących i dalsza 

redukcja kosztów jakości 

Ryzyko awarii sprzętu i związanych z 

tym przestojów produkcyjnych 

Integracja systemu z ERP i systemami 

planowania produkcji 

Konieczność zapewnienia ciągłej 

aktualizacji oprogramowania i modeli 

predykcyjnych 

Dalsza poprawa efektywności poprzez 

automatyzację reakcji na odchylenia 

procesowe 

Potencjalne braki kompetencyjne 

personelu w zakresie analizy danych i 

obsługi systemów predykcyjnych 

Wzmocnienie pozycji konkurencyjnej 

poprzez spełnienie wymogów Przemysłu 

4.0 

Zależność od sprawności infrastruktury 

IT oraz skuteczności zabezpieczeń 

cybernetycznych 

Zwiększenie satysfakcji klientów dzięki 

redukcji reklamacji i wyrobów 

niezgodnych 

  

Opracowanie własne.  

 Mocne strony systemu jednoznacznie dominują nad zidentyfikowanymi słabościami i zagrożeniami. 

Walidacja przeprowadzona w rozdziale 5 potwierdziła znaczącą poprawę stabilności procesu i jakości 

wyrobów, czego dowodem jest spadek wskaźnika DPMO, wzrost OEE czy redukcja przeważeń surowca 

co przełożyło się na relatywne oszczędności finansowe. Szanse rozwojowe wynikają głównie  

z możliwości pełnego wykorzystania modułów predykcyjnych, dalszego ograniczenia badań 

niszczących i automatyzacji reakcji na odchylenia procesowe. System jest w pełni zgodny z ideą 

Przemysłu 4.0, a jego wielomodułowa architektura zapewnia elastyczność w rozbudowie i integracji z 

innymi rozwiązaniami IT. Zagrożenia i słabości mają przede wszystkim charakter eksploatacyjny  

i organizacyjny i mogą być skutecznie minimalizowane poprzez regularną konserwację, aktualizacje 

oprogramowania, utrzymanie kompetencji personelu oraz rozwój infrastruktury IT. W rezultacie 

wdrożony system można uznać za stabilny, ekonomicznie uzasadniony i gotowy do dalszego rozwoju, 

a jego przewagi funkcjonalne wyraźnie przeważają nad ograniczeniami. 
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6. Podsumowanie i wnioski 

6.1. Najważniejsze rezultaty badań i efektów wdrożenia 

 Realizacja rozprawy doprowadziła do opracowania i wdrożenia w przedsiębiorstwie Mróz S.A. 

inteligentnego systemu nadzorowania zautomatyzowanego procesu konfekcjonowania wyrobów, 

którego skuteczność została potwierdzona w warunkach przemysłowych. Najważniejsze rezultaty badań 

koncentrują się wokół dwóch obszarów: opracowania modelu predykcyjnego mikronieszczelności 

opakowań opartego na regresji logistycznej oraz modelu inspekcji wizyjnej bazującego na 

konwolucyjnych sieciach neuronowych, w którym zastosowano klasyfikatory umożliwiające 

skuteczne rozróżnianie jednostek zgodnych i niezgodnych. Oba modele zostały zweryfikowane  

i wdrożone w środowisku produkcyjnym, dostarczając zarówno wartości poznawczych, jak  

i praktycznych. 

 Proces badawczy obejmował budowę i sukcesywne rozszerzanie bazy obrazów wyrobów zgodnych 

i niezgodnych, przygotowanie i augmentację zbiorów treningowych, wielokrotne cykle trenowania  

i testowania modeli oraz opracowanie i rozwój klasyfikatora wizyjnego opartego na konwolucyjnych 

sieciach neuronowych. Kolejne iteracje procesu obejmowały jego optymalizację, w tym redukcję liczby 

klas w celu osiągnięcia ustalonego progu ufności. Ostateczny model osiągnął na zbiorze walidacyjnym 

dokładność klasyfikacji (accuracy) na poziomie 97%, przy czułości (sensitivity) 95% oraz precyzji 

(precision) 100% dla klasy wyrobów niezgodnych, natomiast w warunkach przemysłowych wskaźnik 

poprawnych klasyfikacji (passing rate) wyniósł 99% Wyniki te jednoznacznie potwierdziły, że 

inspekcja wizyjna wsparta metodami głębokiego uczenia umożliwia kontrolę 100% strumienia 

wyrobów, znacząco przewyższając skuteczność tradycyjnych metod. 

 Drugim kluczowym obszarem badań było opracowanie modelu predykcyjnego 

mikronieszczelności opakowań. Na podstawie serii eksperymentów czynnych zidentyfikowano trzy 

parametry krytyczne: temperaturę zgrzewania, ciśnienie w komorze pakującej i wydajność linii. 

W ramach eksperymentu zmierzone parametry zestawiono z odpowiednimi wynikami badań na 

zawartość tlenu w opakowaniu, co pozwoliło uzyskać dane oznaczone etykietami jakościowymi, 

wykorzystane do budowy modelu decyzyjnego i analiz statystycznych pozwalających uzyskać wartości 

nominalne, tolerancje i progi alarmowe oraz określić ich odpowiedzialności za odchylenia 

jakościowe. Walidacja w warunkach przemysłowych zbudowanego modelu regresji logistycznej, 

wykazała dokładność klasyfikacji na poziomie 81,5%, czułość 75%, swoistość 86,7%, precyzję 

81,8%, a wartość pola pod krzywą ROC (AUC) wyniosła 0,85. Tak wysokie wyniki potwierdzają 

zdolność modelu do skutecznego rozróżniania wyrobów zgodnych i niezgodnych oraz otwierają 

możliwość istotnego ograniczenia liczby badań niszczących. 

 Efekty wdrożenia systemu w przedsiębiorstwie jednoznacznie potwierdzają jego wartość 

aplikacyjną. W warunkach przemysłowych odnotowano: 

• zmniejszenie odchylenia standardowego masy porcji z 18,07 g do 6,71 g, 
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• redukcję przeważeń surowca o 18,4 t w ciągu dwóch lat, 

• wzrost średniej wydajności linii z 13,44 do 15,99 szt./min, 

• poprawę OEE z 51,37% do 67,96%, 

• spadek DPMO (ogółem) z 80,6 do 30,2, 

• znaczące ograniczenie liczby reklamacji jakościowych. 

 Uzyskane wyniki jednoznacznie dowodzą, że cel pracy doktorskiej, którym było opracowanie 

koncepcji oraz weryfikacja w warunkach przemysłowych inteligentnego systemu nadzorowania 

zautomatyzowanego procesu konfekcjonowania wyrobów, wykorzystującego metody zaawansowanej 

analityki danych i sztucznej inteligencji, został osiągnięty. 

6.2. Wnioski poznawcze 

 Wnioski płynące z przeprowadzonych badań i wdrożenia inteligentnego systemu nadzorowania 

odnoszą się bezpośrednio do sformułowanego problemu badawczego oraz trzech pytań badawczych,  

 Odpowiedzią na pierwsze pytanie badawcze – jakie czynniki determinują efektywność i stabilność 

procesu konfekcjonowania oraz charakterystyki jakościowe wyrobów – było przeprowadzenie analizy 

zarówno czynników technologicznych, organizacyjnych, informacyjnych jak i środowiskowych. 

Badania wykazały, że w przypadku procesów konfekcjonowania kluczowe znaczenie miała skuteczna 

kontrola parametrów technologicznych, utrzymanie stabilności maszyn i urządzeń oraz bieżące 

monitorowanie w czasie rzeczywistym. Na poziomie organizacyjnym istotne okazało się wprowadzenie 

procedur i instrukcji ograniczających ryzyko błędów ludzkich, a także zapewnienie powtarzalności 

poprzez monitorowanie i raportowanie parametrów krytycznych. W obszarze informacyjnym 

opracowany system umożliwił integrację danych pochodzących z wielu źródeł (wag, czujników, 

systemów wizyjnych i modułów etykietowania) i ich wykorzystanie do wsparcia decyzyjnego. Czynniki 

ludzkie, związane z kompetencjami operatorów, zostały częściowo zneutralizowane dzięki 

automatyzacji i zastosowaniu sztucznej inteligencji, która przejęła zadania wymagające wysokiej 

precyzji i szybkiej reakcji. W konsekwencji uzyskano pełniejsze rozumienie procesu, a przeprowadzone 

badania pozwoliły zidentyfikować powiązania między poszczególnymi obszarami, wzbogacając wiedzę 

na temat uwarunkowań stabilności i jakości w konfekcjonowaniu. 

 Drugie pytanie badawcze – jakie dane procesowe są kluczowe dla skutecznego identyfikowania 

niezgodności w zautomatyzowanym procesie konfekcjonowania – zostało rozstrzygnięte poprzez 

przeprowadzenie serii eksperymentów czynnych, w których celowo modyfikowano wartości różnych 

zmiennych technologicznych, a następnie analizowano ich wpływ na stabilność procesu i jakość 

wyrobów. Początkowo rozważano szeroki zestaw parametrów, obejmujący wiele potencjalnych 

czynników procesowych, lecz dopiero ich systematyczne zestawianie z wynikami badań niszczących 

(zawartość tlenu) pozwoliło na wyłonienie zmiennych o największym znaczeniu. Badania wykazały 

jednoznacznie, że temperatura zgrzewania, ciśnienie bezwzględne w komorze pakującej oraz 

wydajność linii są parametrami krytycznymi, których utrzymanie w wąskich granicach tolerancji 
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warunkuje szczelność opakowań i minimalizację resztkowej zawartości tlenu. W wyniku analiz 

porównawczych wielu wariantów pracy maszyny i kombinacji wartości parametrów to właśnie te trzy 

zmienne zostały uznane za decydujące dla stabilności procesu i jakości wyrobu, podczas gdy pozostałe 

badane czynniki nie wnosiły istotnej wartości diagnostycznej. Dla operacji naważania kluczowym 

danym proces, potwierdzonym zarówno analizą danych historycznych, jak i eksperymentami, była 

masa porcji, której stabilność warunkuje jednocześnie zgodność z wymaganiami prawnymi 

dotyczącymi masy jednostkowej oraz ograniczenie strat surowcowych wynikających z przeważeń. 

Uzupełniająco istotne okazały się również dane z systemów wizyjnych i modułów OCR, 

umożliwiające wykrywanie błędów etykietowania, jakości nadruku oraz czytelności kodów. 

Synchronizacja wszystkich źródeł danych w ramach spójnej architektury oraz ich bieżąca analiza 

pozwoliły na identyfikację odchyleń w czasie rzeczywistym i precyzyjne określenie granic stabilnej 

pracy procesu. 

 Trzecie pytanie badawcze – jakie narzędzia i metody będą w sposób skuteczny wspierać 

nadzorowanie parametrów procesu konfekcjonowania – zostało rozstrzygnięte poprzez zastosowanie 

zarówno klasycznych rozwiązań analitycznych, jak i metod sztucznej inteligencji. W pierwszej grupie 

znalazły się metody o charakterze analitycznym i statystycznym, które umożliwiały identyfikację 

trendów i odchyleń w danych procesowych. Istotną rolę odegrały także rozwiązania oparte na 

przetwarzaniu i analizie obrazów. W module etykietowania wdrożono narzędzia OCR, Blob Finder  

i 2D Code Analysis, które umożliwiły pełną automatyzację weryfikacji treści etykiet, czytelności kodów 

kreskowych i ich pozycjonowania. Drugą grupę stanowią metody oparte na sztucznej inteligencji, 

których wybór był dostosowany do specyfiki poszczególnych operacji. W przypadku wykrywania 

„nieszczelności I” wysoką skuteczność zapewniły rozwiązania bazujące na konwolucyjnych sieciach 

neuronowych (CNN). W fazie uczenia wykorzystano metody augmentacji danych oraz monitorowano 

przebieg funkcji straty i dokładność klasyfikacji. Walidacja przemysłowa potwierdziła, że opracowany 

klasyfikator osiągnął 97% skuteczności, co pozwoliło na w pełni automatyczne i wiarygodne 

wykrywanie defektów niewidocznych dla tradycyjnej inspekcji wizualnej. Dla „nieszczelności II”, 

zastosowano podejście predykcyjne oparte na regresji logistycznej. Model ten został zbudowany  

w oparciu o dane procesowe zestawione z wynikami badań niszczących, co umożliwiło przypisanie 

etykiet jakościowych do każdej obserwacji. Walidacja przeprowadzona w warunkach przemysłowych 

wykazała skuteczność klasyfikacji na wysokim poziomie co potwierdziło użyteczność tego podejścia w 

nadzorze procesów. Łączne zastosowanie metod analitycznych, narzędzi przetwarzania obrazu oraz 

rozwiązań AI umożliwiło zbudowanie systemu, który pokrywa pełne spektrum ryzyk związanych  

z procesem konfekcjonowania od błędów związanych z masą i parametrami technologicznymi, przez 

mikronieszczelności, aż po defekty etykiet i oznakowania. 
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6.3. Wnioski utylitarne 

 Z perspektywy wdrożeniowej i praktycznej przeprowadzone badania oraz implementacja systemu 

nadzorowania przyniosły szereg istotnych wniosków. 

 Po pierwsze, doświadczenia z realizacji pracy jednoznacznie dowiodły, że pełna cyfryzacja 

akwizycji danych procesowych jest warunkiem koniecznym do skutecznego nadzorowania procesu 

konfekcjonowania. Dopiero ciągła rejestracja wartości parametrów, ich jednoznaczna identyfikacja oraz 

synchronizacja czasowa pozwoliły uzyskać kompletny obraz przebiegu procesu i stworzyć podstawy do 

implementacji narzędzi analitycznych i predykcyjnych. 

 Po drugie, wdrożenie architektury opartej na podziale na warstwy i moduły okazało się 

rozwiązaniem efektywnym zarówno od strony organizacyjnej, jak i technicznej. Warstwowość 

zapewniła przejrzyste rozdzielenie zadań pomiędzy poziom akwizycji, analizy, decyzji i wizualizacji, 

natomiast modułowość umożliwiła jednoznaczne przypisanie funkcji do poszczególnych obszarów 

procesu. Taka struktura sprawdziła się w praktyce, a jej transparentność ułatwiła zarówno etap budowy, 

jak i późniejszą eksploatację. 

 Po trzecie, integracja narzędzi sztucznej inteligencji w procesie nadzorowania dowiodła, że ich 

wykorzystanie nie wymaga od użytkowników końcowych szczegółowej znajomości algorytmów 

działania stosowanych metod. Wystarczające jest zrozumienie istoty ich działania. Choć etap budowy 

modeli (np. klasyfikatora CNN czy regresji logistycznej) wymagał prac badawczych i wiedzy 

specjalistycznej, to w codziennej praktyce obsługa systemu sprowadzała się do korzystania  

z intuicyjnych interfejsów HMI. Jest to ważne z punktu widzenia upowszechniania takich rozwiązań  

w przedsiębiorstwach, które często obawiają się bariery kompetencyjnej. 

 Po czwarte, wdrożenie systemu umożliwiło przejście od nadzorowania reaktywnego do 

predykcyjnego, co przyniosło wymierne efekty: spadek wskaźnika DPMO, redukcję strat surowca oraz 

istotny wzrost wskaźnika OEE i średniej wydajności linii. Takie rezultaty potwierdzają, że 

implementacja inteligentnych narzędzi nadzorowania wprost przekłada się na poprawę stabilności, 

jakości i efektywności procesu. 

6.4. Ograniczenia badań i napotkane problemy 

 Opracowanie i wdrożenie inteligentnego systemu nadzorowania procesu konfekcjonowania 

zakończyło się sukcesem, jednak realizacja badań nie była wolna od ograniczeń i trudności. Miały one 

zarówno charakter środowiskowy, jak i techniczno-organizacyjny, a ich przezwyciężenie wymagało 

elastycznego podejścia oraz dostosowania metod badawczych do uwarunkowań przemysłowych. 

 Pierwszym istotnym czynnikiem były zakłócenia związane z pandemią COVID-19.  

W początkowej fazie pracy dostęp do infrastruktury badawczej był ograniczony, a linie produkcyjne 

podlegały okresowym wyłączeniom. Spowodowało to przesunięcia w harmonogramie i konieczność 

zmiany kolejności realizacji części zadań. 
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 Kolejne trudności wynikały z ograniczeń technicznych. Szczególnym wyzwaniem okazał się brak 

dostępu do danych procesowych maszyny pakującej typu tray sealer. Zamknięta struktura 

sterownika PLC uniemożliwiała bezpośrednią akwizycję danych i wymagała opracowania 

alternatywnych metod pozyskiwania informacji. Dodatkowo, w początkowej fazie testów systemu 

wizyjnego obserwowano problemy z wydajnością przetwarzania obrazów i synchronizacją z układem 

odrzutu, które udało się wyeliminować poprzez optymalizację infrastruktury IT oraz parametrów 

algorytmów. 

 Pewne ograniczenia miały również charakter organizacyjny. Niedobór specjalistów w obszarze 

automatyki i programowania wymagał realizacji części zadań własnymi siłami oraz przy wsparciu 

partnerów zewnętrznych, co zwiększało obciążenie organizacyjne i wpływało na tempo badań. W fazie 

implementacji modułu inspekcji etykiet wystąpiły też problemy z rozpoznawaniem znaków  

o zbliżonym kształcie oraz z nadmierną złożonością architektury klasyfikatora, które powodowały 

spadek skuteczności. Dopiero uproszczenie struktury modelu pozwoliło na przywrócenie wysokiej 

jakości klasyfikacji. 

 Ostatnim ograniczeniem było wdrożenie modułu predykcyjnego opartego na regresji logistycznej. 

Mimo wysokiej skuteczności modelu, pełne zastąpienie badań niszczących nie było możliwe ze 

względu na obowiązujące normy jakościowe i wymagania odbiorców, co ograniczyło pełny potencjał 

praktycznego wykorzystania tej części systemu choć w sposób znaczący ograniczyło liczbę pomiarów 

niszczących. 

 Doświadczenia zebrane w trakcie prac wskazują, że implementacja inteligentnych systemów 

nadzorowania w środowisku przemysłowym wymaga nie tylko opracowania zaawansowanych 

algorytmów, lecz także rozwiązania szeregu problemów technicznych, organizacyjnych  

i normatywnych. Ostatecznie jednak wszystkie napotkane ograniczenia zostały skutecznie 

przezwyciężone, a uzyskane wnioski mają charakter uniwersalny i mogą stanowić wskazówkę dla 

przyszłych wdrożeń tego typu systemów. 

6.5. Rekomendacje i kierunki dalszych badań 

 Na podstawie przeprowadzonych prac badawczo-wdrożeniowych oraz doświadczeń zdobytych 

podczas projektowania, implementacji i walidacji inteligentnego systemu nadzorowania procesu 

konfekcjonowania sformułowano rekomendacje dotyczące dalszego rozwoju rozwiązania oraz 

potencjalnych kierunków badań uzupełniających i rozszerzających przedstawioną koncepcję. 

Propozycje te mają charakter zarówno praktyczny, związany z doskonaleniem systemu w środowisku 

przemysłowym, jak i naukowy, ukierunkowany na pogłębianie wiedzy w obszarze cyfryzacji  

i automatyzacji procesów produkcyjnych. 

 Pierwszym kierunkiem jest adaptacja systemu do innych linii i zakładów. Opracowane 

rozwiązanie, dzięki modułowej architekturze oraz uniwersalnemu podejściu do rejestracji, analizy 

i klasyfikacji danych, może zostać przeniesione do innych linii produkcyjnych w zakładzie Mróz S.A. 
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oraz do przedsiębiorstw o zbliżonym profilu procesowym. Skalowalność systemu umożliwia jego 

dostosowanie do odmiennych typów produktów, układów technologicznych i warunków 

eksploatacyjnych. 

 Drugim obszarem rozwoju powinno być rozszerzenie badań w kierunku utrzymania ruchu  

i predykcji awarii. Dotychczas prace koncentrowały się głównie na nadzorze jakościowym i stabilności 

procesu. Aspekt związany z predykcją awarii został jedynie zarysowany, dlatego rekomenduje się jego 

pogłębienie poprzez rozbudowę modułów analitycznych o funkcje diagnostyczne i prognostyczne, 

umożliwiające wczesne wykrywanie symptomów zużycia lub zakłóceń pracy urządzeń. Szczególne 

znaczenie mają tu maszyny pakujące i systemy wizyjne, które determinują stabilność procesu. Dalsze 

badania powinny obejmować identyfikację wskaźników diagnostycznych, rozszerzoną analizę trendów 

anomalii oraz opracowanie algorytmów predykcyjnych umożliwiających wdrożenie strategii predictive 

maintenance w rzeczywistych warunkach przemysłowych. 

 Trzecim zaleceniem jest integracja systemu z nadrzędnymi systemami IT. Powiązanie 

inteligentnego systemu nadzorowania z centralnym systemem zarządzania (np. Comarch ERP) 

pozwoliłoby na automatyczne przekazywanie danych produkcyjnych dotyczących wydajności, 

jakości, statusu partii i zdarzeń alarmowych. Taka integracja zwiększy spójność informacji w skali 

całego zakładu, pogłębi cyfryzację procesów zarządczych oraz umożliwi podejmowanie decyzji 

strategicznych w oparciu o dane produkcyjne dostępne w czasie rzeczywistym. 

 Czwartym kierunkiem jest rozszerzenie zastosowania sztucznej inteligencji na inne obszary 

produkcji. Algorytmy uczenia maszynowego i głębokiego mogą wspierać planowanie produkcji, 

analizę przyczyn przestojów, zarządzanie zużyciem energii czy optymalizację logistyki 

wewnętrznej. Skalowalność opracowanego systemu oraz rosnąca dostępność narzędzi AI sprzyjają 

stopniowemu podnoszeniu poziomu autonomii i adaptacyjności systemów produkcyjnych, zgodnie  

z ideą Przemysłu 4.0. 

 Podsumowując, realizacja powyższych rekomendacji może przyczynić się do dalszego zwiększenia 

efektywności produkcji, redukcji kosztów operacyjnych oraz pogłębienia cyfryzacji procesów 

końcowych, a jednocześnie stanowi naturalną kontynuację badań naukowych podjętych w ramach 

niniejszej rozprawy doktorskiej. 
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ZAŁĄCZNIKI  

 

Załącznik Z.1. Specyfikacja techniczna model: folia CX-P AHB 55 AF / CX-P AHB 55 AF peel (źródło: 

dokumentacja techniczna producenta). 
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Załącznik Z.2. Karta techniczna opakowanie W1/602(187/137/50) 850M (źródło: dokumentacja techniczna 

producenta). 
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Załącznik Z.3. Karta katalogowa czujników temperatury (DTR) (źródło: dokumentacja techniczna producenta). 
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Załącznik Z.4. Fragment dokumentacji elektrycznej systemu odrzutu – schemat sterowania sterownikiem PLC 

Mitsubishi FX5U (źródło: dokumentacja techniczna firmy BALDYGA Automatyka).



  

141 

 

 

 

Załącznik Z.5. Fragment zbioru danych wykorzystanych w opracowaniu regresji logistycznej (źródło: opracowanie własne).
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Załącznik Z.6. Dokument potwierdzający legalizację odważników referencyjnych – część 1 (źródło: 

dokumentacja legalizacyjna Urzędu Miar). 
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Załącznik Z.7. Dokument potwierdzający legalizację odważników referencyjnych - część 2 (źródło: 

dokumentacja legalizacyjna Urzędu Miar). 
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Załącznik Z.8. Raport z weryfikacji jakości kodów kreskowych GS1 DataBar wykonanej w laboratorium 

Łukasiewicz – Poznański Instytut Technologiczny (źródło: laboratorium Łukasiewicz – Poznański Instytut 

Technologiczny). 
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Załącznik Z.9. Świadectwo kalibracji analizatora do pomiarów resztek tlenowych - część 1. (źródło: laboratorium 

kalibracyjne producenta analizatora). 
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Załącznik Z.10. Świadectwo kalibracji analizatora do pomiarów resztek tlenowych - część 2 (źródło: laboratorium 

kalibracyjne producenta analizatora). 
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